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Applications are increasingly diverse
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Often reuse/share data, utilize fine-grained synchronization

These Applications Drive System Reqs
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Scientific 

Computing

Sensitive to NUMA effects in chiplet-based accelerators



Varying amounts of parallelism: sometimes do not fully utilize accelerators

Tight real-time deadlines
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Packet 

Processing

Multi-tenancy (e.g., datacenters): improved utilization but competing deadlines

Local-only power management

Many challenges!

These Applications Drive System Reqs



Monolithic Accelerators Reaching Size Limits
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Issue: large dies have lower yields [Khairy MICRO ‘20]

How to continue scaling accelerator performance?



Chiplet-Based Systems to the Rescue?

AMD & NVIDIA chiplet-based GPUs

Better yield, continue scaling perf

… but new challenges:  

How to schedule work efficiently?

How to avoid NUMA penalties?
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How to handle coh, consist, & synch?

…
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How to effectively manage power?



Improving Scalability of Heterogeneous Systems
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Challenges:
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Enter the Control Plane
• Industry: data plane/phys. layer (e.g., UCIe)

• Control plane acts as interface

• Many accelerators use same interface style

• GPUs: Command Processor (CP)

• Has fine-grained info about what’s happening 
…

• … but current systems ignore much of it

• Our approach:

• Rethink CP design for multi-chiplet systems to 
improve scalability

• Utilize CP’s info, co-design

Better control plane solves many multi-chiplet heterogeneous system challenges
8
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Results: (+ tools [HPCA’18]+)

Approach: HW-SW co-design to improve efficiency

SNL [TR ‘20], TACC [TR ‘20], ORNL [TR ‘21],

 NAGE [SC ‘22], PAL [SC ‘24], SpeedBump [in subm.]

MI [IISWC ‘19], SeqPoint [ISPASS ‘20], Demyst. BERT 

[IISWC ‘22], DAB [MICRO ‘20], LAB [HPCA ‘22], 

2C’s [IISWC ‘23], GOLDYLOC [TACO ‘25], CAQS [in subm.]

LAX [HPCA ‘21], SchedMC [in subm.]

IFP [ISCA ‘20], LAB [HPCA ‘22], HS++ [TPDS ‘22], 

T3 [ASPLOS ‘24], CPElide [MICRO ‘24], 

CPElide++ [in subm.]

Today’s Focus: using GPUs as exemplar



Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO 
‘24]

• The Next Steps: Building On CPElide

• Conclusion
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Multi-Chiplet Accelerator Architecture

• Chiplet-based GPUs add additional 

level to the mem hierarchy->L3 cache

• L2 cache private to a particular chiplet

• Access to data in another chiplet’s L2

• inter-chiplet link  

• Through mem (preceding WB req) 
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Department of Electrical and Computer Engineering

What Are Command Processors?
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…

Graphics 
Queue

…
Stream 0 Stream 1 Stream N

… … …
Compute Queues

Packet Processor

Queue Scheduler

Dispatcher / WG Scheduler

CP Memory

…

…

Compute Units

• Interface between host, accelerator
• Scheduling, Synchronization, Address 

Translation, Power Management, …

• Everything control plane is responsible for

• Programmable

• Two primary components:
• Packet Processor

• WG Dispatcher (Queue/Stream Scheduler)

• Dispatches WGs to CUs
• Gets dynamic sched info from code object

• Includes data structures, addresses

• Initializes RF state
• Extracts metadata from code object

• Initializes both scalar and vector regs.



Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch 
[MICRO ‘24]

• The Next Steps: Building On CPElide

• Conclusion
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Move to Multi-Chiplets
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Key Takeaway: L2 caches now private → Implicit kernel boundary sync impacts them
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GPU coh./consist. performs implicit synch at kernel boundaries for correctness

Loss of Inter-Kernel L2 Reuse: 18-54% average performance loss 



CPElide Contributions 

• Insight: Tracking inter-kernel dependencies inside CP can elide 
unnecessary acquire/release at kernel boundaries

• CP has dynamic scheduling information available

• Programmers/compilers can identify mode of access/ranges for data structures

• CPElide adds dependency tracking table inside CP

• Leverages CP’s available info: coarsely track state of all data structure’s accesses 
per chiplet

• Up to 39% less execution time (13% avg), 37% less energy (11% avg), 39% less 
N/W traffic (14% avg) across GPGPU, ML, graph analytics and HPC apps

• Benefits continue to hold as chiplets scale

• Reprogrammable to account for future trend changes
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Design: Two-Level CP

HBM
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• Multi-level Command Processor:

• a global CP

• a local CP per chiplet

• Local CP:

• Controls local scheduling decisions

• Passes runtime info back to global CP

• Global CP:

• Decides work distribution across 

chiplets

• Houses CPElide
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Design: Global CP

CPElide

CPElide Table
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Evaluation Methodology 
• System Simulated: AMD Radeon VII GPU [HPCA’18]

• Key Metrics: 120 CUs/chiplet (vary # chiplets), 16 KB L1 Cache per CU, 8 MB L2 

cache per chip, Inter-Chiplet B/W 768, L3 Size 16MB, 16 GB HBM2

• Simulation Environment: gem5 v21.1

Evaluated Metrics: performance, network traffic, and energy consumption

• Configs: CPElide, Baseline system, HMG [Ren et al. HPCA 2022]

• HMG Directory based cache coherence, keeps track of all sharers [Focus L2]

• Workloads

• GPGPU benchmark Suite: Rodinia

• HPC: Lulesh, Pennant and HACC

• Graph Analytics Benchmarks: Color , FW and SSSP

• Machine Learning: 2 layer CNN, GRU, LSTM 19
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Moderate to high inter-kernel reuse with CPCoh Low inter-kernel reuse with CPCoh

CPCoh: 2 Chiplet HMG: 2 Chiplet CPCoh: 4 Chiplet HMG: 4 Chiplet CPCoh: 6 Chiplet HMG: 6 Chiplet CPCoh: 7 Chiplet HMG: 7 Chiplet

Results: Normalized Performance

• CPElide outperforms both HMG (19% geomean) and Baseline (13% geomean) 

• Able to capture reuse from most apps with moderate-high inter-kernel reuse 

• Apps with little/no reuse suffer perf loss with HMG → more remote traffic from inv

• HMG also does badly for apps with little to no locality in remote traffic

Similar energy and network traffic benefits

CPElide: 2 Chiplet CPElide: 4 Chiplet CPElide: 6 Chiplet CPElide: 7 ChipletHMG: 6 Chiplet HMG: 7 ChipletHMG: 4 ChipletHMG: 2 Chiplet
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CPElide Conclusions
• Multi-chiplets: Add extra level of cache (L3), making L2 caches private to chiplets

• Implicit Sync at kernel boundaries leads loss of inter-kernel reuse from L2 

• Insight: 

• Tracking producer consumer dependencies can reduce implicit sync penalty

• Solution:

• Redesign CP hierarchy: Global CP houses a dependency tracking table

• CPElide leverages runtime scheduling info and mode/range info from SW to 

track data state and elide acquires/releases

• Effective solutions for kernel with mod/high inter-kernel use, outperforms 

baseline by 13% and state of the art schemes (HMG) by 19%

• Scales well, can be reprogrammed to adapt to changing app trends

21

CPElide



Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO 
‘24]

• The Next Steps: Building On CPElide

• Conclusion
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Next Steps

Efficient inter-chiplet coh & consist

…

Chiplet-aware address translation

Rethink HW for global power man.

Key Insight: Smarter CP can resolve challs.
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Handling inter-chiplet NUMA effects

Deciding approp. concur. [TACO’25]



Better Control Plane Design Can Enable:
• (Even) More efficient fine-grained synchronization

• CPElide conservatively flushes/invalidates entire L2 on implicit sync

• Insight: Use CP’s fine-grained tracking info to perform page granularity implicit sync

• Prelim. Results: 41% geomean energy reduction, same perf vs. CPElide

• Scheduler-Coherence co-design to combat NUMA effects

• Global CP queue sched ignores CPElide’s info → NUMA effects

• Insight: Leverage Global CP’s info to co-design queue scheduler and CPElide

• Prelim. Results: geomean 6-30% perf, 19-36% energy, 61-80% NW traffic improvements

• Balancing Deadline-Awareness and Locality

• Often run concurrent jobs with competing deadlines + switch chiplets → NUMA effects

• Insight: Leverage CP info to design queue schedulers that balance locality & deadlines

• Prelim. Results: Completes latency-sensitive jobs up to 2.5X sooner
24



Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO 
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• Conclusion
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Conclusion
• Need to rethink heterogeneous system design to continue scaling

• Die and yield limitations → chiplet-based accelerators now mainstream

• Applications increasingly diverse

• NUMA effects and other challenges hamper efficient scaling

• Heterogeneous systems must rethink control plane for chiplets

• Key Insight: leverage info that is already there, but not used (in CP)

• Can be leveraged for coherence, deadline-awareness, power, synch, …

• Low area overhead & reprogrammable – potential “firmware” style patches 

• More efficient, intelligent, scalable heterogeneous systems

• Opportunity to apply across control plane for chiplet, accel types

26
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