
Rethinking the Control Plane for
Chiplet-Based Heterogeneous Systems

Matthew D. Sinclair

University of Wisconsin-Madison

sinclair@cs.wisc.edu

Collaborators: Brad Beckmann (AMD RAD), Dan Negrut, Mike Swift,
Shivaram Venkataraman, Zhao Zhang (TACC/Rutgers), and others

Students: Tanmay Anand, Aatman Borda, Preyesh Dalmia, Akhil Guliani,
Jeremy Intan, Rutwik Jain, Yiwei Jiang, Rajesh Shashi Kumar,

Rohan Mahapatra, Suchita Pati, Vishnu Ramadas, Kyle Roarty, Prasoon Sinha,
Neeraj Surawar, Brandon Tran, Bobbi Yogatama, and others

mailto:sinclair@cs.wisc.edu

Applications are increasingly diverse

2

Intelligent

Personal Assistants

Graph

Analytics

Scientific

Computing

Raytracing

Machine Learning

Packet

Processing

Often reuse/share data, utilize fine-grained synchronization

These Applications Drive System Reqs

Graph

Analytics

Machine

Learning

3

Scientific

Computing

Sensitive to NUMA effects in chiplet-based accelerators

Varying amounts of parallelism: sometimes do not fully utilize accelerators

Tight real-time deadlines

Intelligent

Personal

Assistants

Machine

Learning

4

Packet

Processing

Multi-tenancy (e.g., datacenters): improved utilization but competing deadlines

Local-only power management

Many challenges!

These Applications Drive System Reqs

Monolithic Accelerators Reaching Size Limits

5

HBM

L2 Cache

CU 0 CU 1 CU 2 CU N
…

L1/Scratch L1/Scratch L1/Scratch L1/Scratch

Command Processor

Issue: large dies have lower yields [Khairy MICRO ‘20]

How to continue scaling accelerator performance?

Chiplet-Based Systems to the Rescue?

AMD & NVIDIA chiplet-based GPUs

Better yield, continue scaling perf

… but new challenges:

How to schedule work efficiently?

How to avoid NUMA penalties?

HBM

L3 Cache

CU

…
L1/Scr

Command Processor

CU…

L2

L1/Scr

Chiplet 0 Chiplet 1 Chiplet K

CU

L1/Scr

CU…

L2

L1/Scr

CU

L1/Scr

CU…

L2

L1/Scr

How to handle coh, consist, & synch?

…
6

How to effectively manage power?

Improving Scalability of Heterogeneous Systems

Global Power

Management

Intelligent Data

Movement

Efficient Fine-Grained

Synchronization

Deadline-Aware

Challenges:

7

Enter the Control Plane
• Industry: data plane/phys. layer (e.g., UCIe)

• Control plane acts as interface

• Many accelerators use same interface style

• GPUs: Command Processor (CP)

• Has fine-grained info about what’s happening
…

• … but current systems ignore much of it

• Our approach:

• Rethink CP design for multi-chiplet systems to
improve scalability

• Utilize CP’s info, co-design

Better control plane solves many multi-chiplet heterogeneous system challenges
8

Improving Scalability of Heterogeneous Systems

Global Power

Management

Intelligent Data

Movement

Efficient Fine-Grained

Synchronization

Deadline-Aware

Challenges:

9

Results: (+ tools [HPCA’18]+)

Approach: HW-SW co-design to improve efficiency

SNL [TR ‘20], TACC [TR ‘20], ORNL [TR ‘21],

 NAGE [SC ‘22], PAL [SC ‘24], SpeedBump [in subm.]

MI [IISWC ‘19], SeqPoint [ISPASS ‘20], Demyst. BERT

[IISWC ‘22], DAB [MICRO ‘20], LAB [HPCA ‘22],

2C’s [IISWC ‘23], GOLDYLOC [TACO ‘25], CAQS [in subm.]

LAX [HPCA ‘21], SchedMC [in subm.]

IFP [ISCA ‘20], LAB [HPCA ‘22], HS++ [TPDS ‘22],

T3 [ASPLOS ‘24], CPElide [MICRO ‘24],

CPElide++ [in subm.]

Today’s Focus: using GPUs as exemplar

Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
‘24]

• The Next Steps: Building On CPElide

• Conclusion

10

Multi-Chiplet Accelerator Architecture

• Chiplet-based GPUs add additional

level to the mem hierarchy->L3 cache

• L2 cache private to a particular chiplet

• Access to data in another chiplet’s L2

• inter-chiplet link

• Through mem (preceding WB req)

11

Main Memory

…

Command Processor

Chiplet 0 Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet K

CU

L1/Scr

CU…

L2

L1/Scr

CU

L1/Scr

CU…

L2

L1/Scr

L3 Cache

CUs + L1$ CUs + L1$

CUs + L1$ CUs + L1$

L2$ L2$

L2$L2$

X
B
A
R

X
B
A
R

X
B
A
R

X
B
A
R

H
B
M

L3

L3 L3

L3

H
B
M

H
B
M

H
B
M

CHIPLET 0 CHIPLET 1

CHIPLET 3CHIPLET 2

12

Department of Electrical and Computer Engineering

What Are Command Processors?

13

…

Graphics
Queue

…
Stream 0 Stream 1 Stream N

… … …
Compute Queues

Packet Processor

Queue Scheduler

Dispatcher / WG Scheduler

CP Memory

…

…

Compute Units

• Interface between host, accelerator
• Scheduling, Synchronization, Address

Translation, Power Management, …

• Everything control plane is responsible for

• Programmable

• Two primary components:
• Packet Processor

• WG Dispatcher (Queue/Stream Scheduler)

• Dispatches WGs to CUs
• Gets dynamic sched info from code object

• Includes data structures, addresses

• Initializes RF state
• Extracts metadata from code object

• Initializes both scalar and vector regs.

Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch
[MICRO ‘24]

• The Next Steps: Building On CPElide

• Conclusion

14

Move to Multi-Chiplets

Main Memory

Command Processor

CU

L1/Scr

CU…

L1/Scr

L2 Cache

Main Memory

…

Command Processor

Chiplet 0 Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet K

CU

L1/Scr

CU…

L2

L1/Scr

CU

L1/Scr

CU…

L2

L1/Scr

L3 Cache

CU CU CU CU

L1/Scr L1/Scr L1/Scr

Key Takeaway: L2 caches now private → Implicit kernel boundary sync impacts them

L1/Scr

GPU coh./consist. performs implicit synch at kernel boundaries for correctness

Loss of Inter-Kernel L2 Reuse: 18-54% average performance loss

CPElide Contributions

• Insight: Tracking inter-kernel dependencies inside CP can elide
unnecessary acquire/release at kernel boundaries

• CP has dynamic scheduling information available

• Programmers/compilers can identify mode of access/ranges for data structures

• CPElide adds dependency tracking table inside CP

• Leverages CP’s available info: coarsely track state of all data structure’s accesses
per chiplet

• Up to 39% less execution time (13% avg), 37% less energy (11% avg), 39% less
N/W traffic (14% avg) across GPGPU, ML, graph analytics and HPC apps

• Benefits continue to hold as chiplets scale

• Reprogrammable to account for future trend changes

16

CPElide

Design: Two-Level CP

HBM

L3 Cache

CU

…L1/Scr

Global Command Processor

CU…

L2

L1/Scr

Chiplet 0

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet KLocal CP Local CP Local CP

• Multi-level Command Processor:

• a global CP

• a local CP per chiplet

• Local CP:

• Controls local scheduling decisions

• Passes runtime info back to global CP

• Global CP:

• Decides work distribution across

chiplets

• Houses CPElide

17

L3 Cache

Design: Global CP

CPElide

CPElide Table

18

Evaluation Methodology
• System Simulated: AMD Radeon VII GPU [HPCA’18]

• Key Metrics: 120 CUs/chiplet (vary # chiplets), 16 KB L1 Cache per CU, 8 MB L2

cache per chip, Inter-Chiplet B/W 768, L3 Size 16MB, 16 GB HBM2

• Simulation Environment: gem5 v21.1

Evaluated Metrics: performance, network traffic, and energy consumption

• Configs: CPElide, Baseline system, HMG [Ren et al. HPCA 2022]

• HMG Directory based cache coherence, keeps track of all sharers [Focus L2]

• Workloads

• GPGPU benchmark Suite: Rodinia

• HPC: Lulesh, Pennant and HACC

• Graph Analytics Benchmarks: Color , FW and SSSP

• Machine Learning: 2 layer CNN, GRU, LSTM 19

N
or

m
al

iz
ed

 S
pe

ed
-u

p
 (H

ig
he

r
is

 b
et

te
r)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
ho

ts
po

t3
D

ho
ts

po
t

pe
nn

an
t

fw

co
lo

r

lu
d

ba
be

ls
tr

ea
m

lu
le

sh

ss
sp

_e
ll

rn
n4

 (g
ru

)

rn
n1

6
(g

ru
)

sq
ua

re

rn
n4

 (l
st

m
)

rn
n1

6
(l

st
m

)

ga
us

si
an

H
A

CC

ba
ck

pr
op bf

s

pa
th

fi
nd

er

cn
n

dw
t2

d

sr
ad

_v
2

nw

bt
re

e

av
er

ag
e

Moderate to high inter-kernel reuse with CPCoh Low inter-kernel reuse with CPCoh

CPCoh: 2 Chiplet HMG: 2 Chiplet CPCoh: 4 Chiplet HMG: 4 Chiplet CPCoh: 6 Chiplet HMG: 6 Chiplet CPCoh: 7 Chiplet HMG: 7 Chiplet

Results: Normalized Performance

• CPElide outperforms both HMG (19% geomean) and Baseline (13% geomean)

• Able to capture reuse from most apps with moderate-high inter-kernel reuse

• Apps with little/no reuse suffer perf loss with HMG → more remote traffic from inv

• HMG also does badly for apps with little to no locality in remote traffic

Similar energy and network traffic benefits

CPElide: 2 Chiplet CPElide: 4 Chiplet CPElide: 6 Chiplet CPElide: 7 ChipletHMG: 6 Chiplet HMG: 7 ChipletHMG: 4 ChipletHMG: 2 Chiplet

20

CPElide Conclusions
• Multi-chiplets: Add extra level of cache (L3), making L2 caches private to chiplets

• Implicit Sync at kernel boundaries leads loss of inter-kernel reuse from L2

• Insight:

• Tracking producer consumer dependencies can reduce implicit sync penalty

• Solution:

• Redesign CP hierarchy: Global CP houses a dependency tracking table

• CPElide leverages runtime scheduling info and mode/range info from SW to

track data state and elide acquires/releases

• Effective solutions for kernel with mod/high inter-kernel use, outperforms

baseline by 13% and state of the art schemes (HMG) by 19%

• Scales well, can be reprogrammed to adapt to changing app trends

21

CPElide

Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
‘24]

• The Next Steps: Building On CPElide

• Conclusion

22

Next Steps

Efficient inter-chiplet coh & consist

…

Chiplet-aware address translation

Rethink HW for global power man.

Key Insight: Smarter CP can resolve challs.

HBM

…

Global Command Processor

Chiplet 0 Chiplet 1

CU

L1/Scr

CU…

L2

L1/Scr

Chiplet K

Local CP

CU

L1/Scr

CU…

L2

L1/Scr

Local CP

CU

L1/Scr

CU…

L2

L1/Scr

Local CP

L3 Cache

Handling inter-chiplet NUMA effects

Deciding approp. concur. [TACO’25]

Better Control Plane Design Can Enable:
• (Even) More efficient fine-grained synchronization

• CPElide conservatively flushes/invalidates entire L2 on implicit sync

• Insight: Use CP’s fine-grained tracking info to perform page granularity implicit sync

• Prelim. Results: 41% geomean energy reduction, same perf vs. CPElide

• Scheduler-Coherence co-design to combat NUMA effects

• Global CP queue sched ignores CPElide’s info → NUMA effects

• Insight: Leverage Global CP’s info to co-design queue scheduler and CPElide

• Prelim. Results: geomean 6-30% perf, 19-36% energy, 61-80% NW traffic improvements

• Balancing Deadline-Awareness and Locality

• Often run concurrent jobs with competing deadlines + switch chiplets → NUMA effects

• Insight: Leverage CP info to design queue schedulers that balance locality & deadlines

• Prelim. Results: Completes latency-sensitive jobs up to 2.5X sooner
24

Outline

• Motivation

• Background

• CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
‘24]

• The Next Steps: Building On CPElide

• Conclusion

25

Conclusion
• Need to rethink heterogeneous system design to continue scaling

• Die and yield limitations → chiplet-based accelerators now mainstream

• Applications increasingly diverse

• NUMA effects and other challenges hamper efficient scaling

• Heterogeneous systems must rethink control plane for chiplets

• Key Insight: leverage info that is already there, but not used (in CP)

• Can be leveraged for coherence, deadline-awareness, power, synch, …

• Low area overhead & reprogrammable – potential “firmware” style patches

• More efficient, intelligent, scalable heterogeneous systems

• Opportunity to apply across control plane for chiplet, accel types

26

	Slide 1
	Slide 2: Applications are increasingly diverse
	Slide 3: These Applications Drive System Reqs
	Slide 4: These Applications Drive System Reqs
	Slide 5: Monolithic Accelerators Reaching Size Limits
	Slide 6: Chiplet-Based Systems to the Rescue?
	Slide 7: Improving Scalability of Heterogeneous Systems
	Slide 8: Enter the Control Plane
	Slide 9: Improving Scalability of Heterogeneous Systems
	Slide 10: Outline
	Slide 11: Multi-Chiplet Accelerator Architecture
	Slide 12
	Slide 13: What Are Command Processors?
	Slide 14: Outline
	Slide 15: Move to Multi-Chiplets
	Slide 16: CPElide Contributions
	Slide 17: Design: Two-Level CP
	Slide 18: Design: Global CP
	Slide 19
	Slide 20: Results: Normalized Performance
	Slide 21: CPElide Conclusions
	Slide 22: Outline
	Slide 23: Next Steps
	Slide 24: Better Control Plane Design Can Enable:
	Slide 25: Outline
	Slide 26: Conclusion

