Rethinking the Control Plane for
Chiplet-Based Heterogeneous Systems

Matthew D. Sinclair
University of Wisconsin-Madison
sinclair@cs.wisc.edu

Collaborators: Brad Beckmann (AMD RAD), Dan Negrut, Mike Swift,
Shivaram Venkataraman, Zhao Zhang (TACC/Rutgers), and others

Students: Tanmay Anand, Aatman Borda, Preyesh Dalmia, Akhil Guliani,

Jeremy Intan, Rutwik Jain, Yiwei Jiang, Rajesh Shashi Kumatr,

[~ Rohan Mahapatra, Suchita Pati, Vishnu Ramadas, Kyle Roarty, Prasoon Sinha,
Neeraj Surawar, Brandon Tran, Bobbi Yogatama, and others

mailto:sinclair@cs.wisc.edu

0 Applications are increasingly diverse

Scientific

Computing @

Packet
Processing

Raytracing

QO@on

Facebook M

1000024 2000024

Graph

Analytics + - S .
s & Intelligent

Personal Assistants

2

These Applications Drive System Regs

!@ e

Scientific Graph Machine
Computing Analytics Learning

Often reuse/share data, utilize fine-grained synchronization

Sensitive to NUMA effects in chiplet-based accelerators

These Applications Drive System Regs

ON ‘' NON N

Cortana Siri amazonecho Coogl Facebook M
Intelligent Machine Packet
Personal Learning Processing
Assistants

Tight real-time deadlines
Varying amounts of parallelism: sometimes do not fully utilize accelerators

Multi-tenancy (e.g., datacenters): improved utilization but competing deadlines

Local-only power management
Many challenges! .

¥ Monolithic Accelerators Reaching Size Limits

Issue: large dies have lower yields [Khairy MICRO “20]
How to continue scaling accelerator performance?

) Chiplet-Based Systems to the Rescue?

Command Processor : g PNET

B
o3/ © ‘_
2

AMD & NVIDIA chiplet-based GPUs

Better yield, continue scaling perf
... but new challenges:

How to schedule work efficiently?
How to avoid NUMA penalties?

How to handle coh, consist, & synch?
How to effectively manage power?

@ Improving Scalability of Heterogeneous Systems

Challenges:

Deadline-Aware

Efficient Fine-Grained
Synchronization

Global Power
Management

Intelligent Data
Movement

Enter the Control Plane
« |Industry: data plane/phys. layer (e.g., UCle)

« Many accelerators use same interface style

Work, 10, Memory l IComP'eted Work, « GPUs: Command Processor (CP)

Management, ... Interrupts, ...
 Has fine-grained info about what’s happening

Control Plane
Schedule Work, i _ _
D(;tg vae,,or I 2‘;‘;‘23?125 l] I I e ... but current systems ignore much of it
Synch, Power, ... Interrupts, ...
« Our approach:
m ﬁ + Rethink CP design for multi-chiplet systems to

Improve scalability

« Ultilize CP’s info, co-design

Better control plane solves many multi-chiplet heterogeneous system challenges

@ Improving Scalability of Heterogeneous Systems
Challenges: Results: (+ tools [HPCA'18]+)

LAX [HPCA ‘21],(SchedMC [in subm.]

Deadline-Aware

Efficient Fine-Grained IFP [ISCA ‘20], LAB [HPCA" + 22],
. T3 [ASPLOS ‘24],|CPElide [MICRO ‘24],
Synchronization CPElide++ [in subm]
Global Power SNL [TR “20], TACC [TR ‘20], ORNL [TR ‘21],
Management NAGE [SC ‘22], PAL [SC 24], SpeedBump [in subm.]

: MI [ISWC “19], SeqPoint [ISPASS 20, Demyst, BERT
Intelligent Data [ISWC ‘22], DAB [MICRO ‘20], LAB [HPCA ‘2]
Movement 2C’s [IISWC ‘23], GOLDYLOC [TACO ‘25]/ CAQS [in subm.]

Approach: HW-SW co-design to improve efficiency

Today’s Focus: using GPUs as exemplar

Outline

Background

CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
24]

The Next Steps: Building On CPElide
Conclusion

10

o

Multi-Chiplet Accelerator Architecture

« Chiplet-based GPUs add additional
level to the mem hierarchy->L3 cache

« L2 cache private to a particular chiplet
« Access to data in another chiplet’'s L2

* Inter-chiplet link
* Through mem (preceding WB req)

11

o

CHIPLET O CHIPLET 1
L3 < L2F |« é >
<l
\ 4 \ A

CHIPLET 2 CHIPLET 3

12

What Are Command Processors?

Stream 0 Stream 1 Stream N

-------- . Packet Processor
Graphics |

Queue !

i

Queue Scheduler

Dispatcher / WG Scheduler

i

Compute Units

CP Memory

* Interface between host, accelerator

» Scheduling, Synchronization, Address
Translation, Power Management, ...

 Everything control plane is responsible for
* Programmable

» Two primary components:
* Packet Processor
« WG Dispatcher (Queue/Stream Scheduler)

* Dispatches WGs to CUs

« Gets dynamic sched info from code object
* Includes data structures, addresses

* Initializes RF state
 Extracts metadata from code object
* Initializes both scalar and vector regs.

13

Outline

CPElide: Efficient Multi-Chiplet GPU Implicit Synch
[MICRO 24]

The Next Steps: Building On CPElide
Conclusion

14

o

Move to Multi-Chiplets

Command Processor Command Processor
Chiplet 0 Chiplet 1 Chiplet K

GPU coh./consist. performs implicit synch at kernel boundaries for correctness
Key Takeaway: L2 caches now private - Implicit kernel boundary sync impacts them

Loss of Inter-Kernel L2 Reuse: 18-54% average performance loss

@ CPElide Contributions

* Insight: Tracking inter-kernel dependencies inside CP can elide
unnecessary acquire/release at kernel boundaries

« CP has dynamic scheduling information available
* Programmers/compilers can identify mode of access/ranges for data structures

 CPElide adds dependency tracking table inside CP

 Leverages CP’s available info: coarsely track state of all data structure’s accesses
per chiplet

* Up to 39% less execution time (13% avg), 37% less energy (11% avg), 39% less

« Benefits continue to hold as chiplets scale
* Reprogrammable to account for future trend changes

16

0 Design: Two-Level CP

 Multi-level Command Processor:

« alocal CP per chiplet

ESCache + Local CP:
« Controls local scheduling decisions
« Passes runtime info back to global CP

 Global CP:
« Decides work distribution across
chiplets
« Houses CPElide

Global Command Processor

17

Design: Global CP

Stream 0 Stream 1 Stream N

\ 4

Packet Processor

3

: Graphics
1 Queue
:

I

I

1

Global Scheduler

Dispatcher/WG Scheduler

i

Compute Units

CP Memory

CPElide
Control logic

Acquires and Releases

18

Evaluation Methodology
System Simulated: AMD Radeon VII GPU [HPCA'18]

Key Metrics: 120 CUs/chiplet (vary # chiplets), 16 KB L1 Cache per CU, 8 MB L2
cache per chip, Inter-Chiplet B/W 768, L3 Size 16MB, 16 GB HBM2

Simulation Environment: gem5 v21.1
Evaluated Metrics: performance, network traffic, and energy consumption

Configs: CPElide, Baseline system, HMG [Ren et al. HPCA 2022]
« HMG Directory based cache coherence, keeps track of all sharers [Focus L2]

Workloads

« GPGPU benchmark Suite: Rodinia

 HPC: Lulesh, Pennant and HACC

« Graph Analytics Benchmarks: Color , FW and SSSP

« Machine Learning: 2 layer CNN, GRU, LSTM 19

(W) Results: Normalized Performance

B CPElide: 2 Chiplet ® HMG: 2 Chiplet CPElide: 4 Chiplet B HMG: 4 Chiplet M CPElide: 6 Chiplet HMG: 6 Chiplet B CPElide: 7 Chiplet B HMG: 7 Chiplet

0.80
0.60
0.40
0.20 “

Moderate to high inter-kernel reuse Low inter-kernel reuse’

Normalized Speed-up (Higher is better)
5
o

o

[=}

o
I

average m——

hotspot3D
hotspot
pennant
color
babelstream
lulesh
sssp_ell
rnn4 (gru)
rnn16 (gru)
square
rnn4 (Istm)
rnn16 (Istm)
gaussian
HACC
backprop
pathfinder
dwt2d
srad_v2
btree

> >

« CPElide outperforms both HMG (19% geomean) and Baseline (13% geomean)
* Able to capture reuse from most apps with moderate-high inter-kernel reuse
« Apps with little/no reuse suffer perf loss with HMG - more remote traffic from inv
« HMG also does badly for apps with little to no locality in remote traffic

Similar energy and network traffic benefits

20

= \) @)
K\
\

CPElide Conclusions

Multi-chiplets: Add extra level of cache (L3), making L2 caches private to chiplets

Implicit Sync at kernel boundaries leads loss of inter-kernel reuse from L2

Insight:

« Tracking producer consumer dependencies can reduce implicit sync penalty

Solution:

« Redesign CP hierarchy: Global CP houses a dependency tracking table

« CPElide leverages runtime scheduling info and mode/range info from SW to
track data state and elide acquires/releases

« Effective solutions for kernel with mod/high inter-kernel use, outperforms
baseline by 13% and state of the art schemes (HMG) by 19%

« Scales well, can be reprogrammed to adapt to changing app trends

21

Outline

Motivation
Background

CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
'24]

The Next Steps: Building On CPElide
Conclusion

22

) Next Steps

Global Command Processor

Chiplet 0 Chiplet 1 Chiplet K

Chiplet-aware address translation
Rethink HW for global power man.
Handling inter-chiplet NUMA effects

Deciding approp. concur. [TACO’25]

Key Insight: Smarter CP can resolve challs.

o

« (Even) More efficient fine-grained synchronization

Better Control Plane Design Can Enable:

« CPElide conservatively flushes/invalidates entire L2 on implicit sync
« Insight: Use CP’s fine-grained tracking info to perform page granularity implicit sync

 Prelim. Results: 41% geomean energy reduction, same perf vs. CPElide

« Scheduler-Coherence co-design to combat NUMA effects
* Global CP queue sched ignores CPElide’s info 2> NUMA effects
* Insight: Leverage Global CP’s info to co-design queue scheduler and CPElide
 Prelim. Results: geomean 6-30% perf, 19-36% energy, 61-80% NW traffic improvements

« Balancing Deadline-Awareness and Locality
« Often run concurrent jobs with competing deadlines + switch chiplets = NUMA effects
« Insight: Leverage CP info to design queue schedulers that balance locality & deadlines

 Prelim. Results: Completes latency-sensitive jobs up to 2.5X sooner y

Outline

Motivation
Background

CPElide: Efficient Multi-Chiplet GPU Implicit Synch [MICRO
'24]

The Next Steps: Building On CPElide
Conclusion

25

0 Conclusion
Need to rethink heterogeneous system design to continue scaling
« Die and yield limitations = chiplet-based accelerators now mainstream

« Applications increasingly diverse
 NUMA effects and other challenges hamper efficient scaling

* Heterogeneous systems must rethink control plane for chiplets
« Key Insight: leverage info that is already there, but not used (in CP)
« Can be leveraged for coherence, deadline-awareness, power, synch, ...
 Low area overhead & reprogrammable — potential “firmware” style patches

More efficient, intelligent, scalable heterogeneous systems
« Opportunity to apply across control plane for chiplet, accel types

26

	Slide 1
	Slide 2: Applications are increasingly diverse
	Slide 3: These Applications Drive System Reqs
	Slide 4: These Applications Drive System Reqs
	Slide 5: Monolithic Accelerators Reaching Size Limits
	Slide 6: Chiplet-Based Systems to the Rescue?
	Slide 7: Improving Scalability of Heterogeneous Systems
	Slide 8: Enter the Control Plane
	Slide 9: Improving Scalability of Heterogeneous Systems
	Slide 10: Outline
	Slide 11: Multi-Chiplet Accelerator Architecture
	Slide 12
	Slide 13: What Are Command Processors?
	Slide 14: Outline
	Slide 15: Move to Multi-Chiplets
	Slide 16: CPElide Contributions
	Slide 17: Design: Two-Level CP
	Slide 18: Design: Global CP
	Slide 19
	Slide 20: Results: Normalized Performance
	Slide 21: CPElide Conclusions
	Slide 22: Outline
	Slide 23: Next Steps
	Slide 24: Better Control Plane Design Can Enable:
	Slide 25: Outline
	Slide 26: Conclusion

