MARCH 18TH 2025

Experiences with Scaling Al Workloads on Aurora

VÄINÖ HATANPÄÄ Assistant Computer Scientist vhatanpaeae@anl.gov

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Experiences with Scaling Al Workloads on Aurora

Presentation contents

- 1. Argonne Leadership Computing Facility
- 2. Gordon Bell 2024 finalist: MProt-DPO
- 3. Efficiently launching and running PyTorch at scale
- 4. Ongoing work for AI/ML performance at ALCF

Argonne Leadership Computing Facility

ALCF provides supercomputers to enable scientists to:

- To address grand challenges for the nation
- Perform research that is too complex and expensive to do in a laboratory setting
- Keep the nation safe and competitive

Researchers with a large-scale computing problem can apply to use ALCF resources.

 Multiple allocation award programs available to fit your needs

COMPUTING RESOURCES

#1 AI (HPL-MxP) supercomputer and > 1 exaFLOPS.

System supports 3 types of computing:

- Large-scale Simulations
- Data Intensive Applications
- Al for Science

ALCF AI TESTBED

Next-generation AI platforms to rapidly deploy and accelerate state-of-the-art AI for science

Gordon Bell 2024 Finalist

MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization

MT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization

Gautham Dharuman^{1†}, Kyle Hippe^{1,2†}, Alexander Brace^{1,2†}, Sam Foreman^{1†}, Vaino Hatanpaa¹, Varuni K. Sastry¹, Huihuo Zheng¹, Logan Ward¹, Servesh Muralidharan¹, Archit Vasan¹, Bharat Kale¹, Carla M. Mann^{1,2}, Heng Ma¹, Yun-Hsuan Cheng³, Yuliana Zamora³, Shengchao Liu⁵, Chaowei Xiao⁶, Murali Emani¹, Tom Gibbs³, Mahidhar Tatineni⁷, Deepak Canchi⁸, Jerome Mitchell⁸, Koichi Yamada⁸, Maria Garzaran⁸, Michael E. Papka^{1,9}, Ian Foster^{1,2}, Rick Stevens^{1,2}, Anima Anandkumar^{10*}, Venkatram Vishwanath^{1,9*}, Arvind Ramanathan^{1,2*}

¹Argonne National Laboratory, ²University of Chicago, ³NVIDIA Inc., ⁴Swiss National Supercomputing Center, ⁵University of California, Berkeley, ⁶University of Wisconsin-Madison, Madison, ⁷San Diego Supercomputing Center, ⁸Intel Corporation, ⁹University of Illinois Chicago, ¹⁰California Institute of Technology

+Joint first authors, *Contact authors: venkat@anl.gov, anima@caltech.edu, ramanathana@anl.gov

Hypothesis: Multimodal language models can incorporate experimental observables to constrain the generation of protein sequences

Scaling across diverse supercomputing platforms for LLM training campaigns

System

Aurora

Frontier

Leanardo

Accelerator Specifications

Intel Data Center Max 1550 GPUs

- 128GB of memory
- Peak performance of 481 TFLOPS in FP16 and BF16
- NVIDIA Grace-Hopper (GH-200) processors
 - Grace and Hopper with 128GB and 96GB of memory
 - Peak performance of 900 TFLOPS in FP16 and BF16
- AMD MI250X GPUs
 - 128GB of memory
 - Peak performance of 383 TFLOPS in FP16 and BF16 •
- NVIDIA A100 SXM4 processors
 - 64GB of memory •
 - Peak performance of 312 TFLOPS in FP16 and BF16
- NVIDIA H100 processors
 - 80GB of memory
 - Peak performance of 835 TFLOPS in FP16 and BF16

Network Specifications

- HPE Slingshot 11 using Dragonfly Topology •
 - 10624 nodes
 - 6 GPUs per node
- HPE Slingshot 11 using Dragonfly Topology
 - 2048 nodes
 - 4 GPUs per node
- HPE Slingshot 11 using Dragonfly Topology
 - 9408 nodes
 - 4 GPUs per node
- NVIDIA Mellanox Infiniband HDR with Dragonfly+
 - 3456 nodes
 - 4 GPUs per node
- Infiniband NDR
 - 400 nodes
 - 8 GPUs per node

Sustained Scaling of the 3.5B Model

- We achieve **4.11 EF (BF16) on** Aurora, sustained performance
- Linear scaling in throughput across all systems

 Sustained performance is for the entire training iterations, including the various communication intensive phases as well as I/O.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Efficiently launching and running PyTorch at

scale

Collective operations at scale

Allreduce of 30k+ ranks with large buffers is nontrivial

- Ring-based reduce-scatter/all-gather is able to utilize the bandwidth well until a certain point, but does not scale indefinitely due to the latency component
- We utilized <u>Rabenseifner's</u> <u>algorithm</u> to get better performance at large scale

Fig. 1. Recursive Halving and Doubling. The figure shows the intermediate results after each buffer exchange (followed by a reduction operation in the 1^{st} part). The dotted frames show the overhead caused by a non-power-of-two number of processes.

Collective operations at scale

Performance improvements since SC24:

- Discovery and evaluation of multiple environment variables for OneCCL and Libfabric to tune the low-level communication stack
 - Documented in <u>ALCF docs</u>
- Improvements in the network stack:
 - **PyTorch allreduce Tested up to 8192 nodes * 12 ranks**. We are able to complete an allreduce with good bandwidth utilization

85% scaling from 8 nodes to 8192

Computational details

Achieved 44.5% sustained mean FLOPS utilization (MFU) on Aurora

- Mixed precision compute.
 - FP16/BF16 compute
 - Gradient accumulation and sync in FP32 for numerical stability
- Aurora GPUs contain two compute tiles each
 - We used "tile as a device" configuration, recommended on Aurora for Deep Learning applications
 - 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node
 - Achieved 107 TFLOPS per tile, **1280 TFLOPS per node**
- OneCCL communication library used for optimized collectives for AI workloads on Intel GPUs, similar to NCCL for Nvidia and RCCL for AMD

					1 8	
Machine	Nodes	# GPUs	Sustained EFLOPS	Peak EFLOPS	Sustained/Peak Ratio	% MFU (Sustained)
Aurora	3200	19200	4.11	5.57	0.73	44.5
Alps	2060	8240	2.92	3.16	0.92	41.7
Frontier	2048	8192	1.06	1.18	0.89	33.8
PDX	400	3200	1.29	1.39	0.93	48.4

TABLE III: Peak and sustained performance of the best performing model on each system.

Initializing PyTorch at scale

- torch.distributed init will start a TCP socket-based server on the first process that will communicate information about collectives and distributed setup
- PyTorch 2.4 brings significant improvements to initialization times at scale
- Our Gordon Bell software image was based on PyTorch 2.1
 - We made some hacks to be able to initialize the distributed environment for the scale runs
- Certain settings need to be tuned to allow thousands of socket connections

Need to configure:

- Number of return sockets
 ulimit –n <somethingbig>
- Number of outstanding requests in the socket queue
 - Value set in
 /proc/sys/net/core/somaxconn
 We are investigating changing this globally on Aurora. Workarounds
 exist for now

Computing Facility

Loading Python environments at scale

Package management tools such as conda can have tens of thousands of small files

 Over 30000 files opened on 38400 ranks -> >900 million metadata operations can cause filesystem stalls for all users of the cluster

Many custom changes require an editable installation:

 As a quick solution for the Gordon Bell scaling runs, we packaged the environment and broadcasted it with mpi4py

Should not be an issue for normal usage:

- Default environment is in the node image on Aurora, does not need to load from the Lustre filesystem
- <u>Copper</u> (co-operative caching layer for scalable parallel data movement in Exascale Supercomputers) recommended for speeding up loading custom Python environments

Copper can be used at scale to reduce Lustre load

Ongoing work

10

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

50

50

55

Fault tolerance and rapid saving or loading

Failures become more likely with increased scale

- LLM checkpointing with DAOS (Distributed Asynchronous Object Storage)
 - & Total capacity: 230 PB
 - Peak bandwidth: 30 TB/s with 1024 DAOS server storage Nodes
- Universal checkpointing from DeepSpeed enables converting a Zero-enabled checkpoint from one scale to another

Upcoming work:

- How to integrate PyTorch fault tolerance with HPC
- How the communication libraries can handle fault tolerance and dynamic communicator groups

Checkpointing a 1T Model (17TB) Using DAOS:

Achieved **1.4TB/s** throughput on 512 Aurora nodes with 128 DAOS servers. At 512 nodes, the checkpoint was written in ~13 seconds, significantly outperforming our 650 GB/s Lustre file system.

Credit: Huihuo Zheng

Investigating congestion and hangs with Slingshot Cassini NIC performance counters

Ongoing work with Intel and HPE to understand and detect hangs from NIC counters

1426 metrics to track, 8 NIC interfaces per node

Benchmark Lines (Iteration=2, Stat=t_avg) 200k Elements 1 Elements 2 Elements 4 Elements 8 Elements 32 150k Elements 64 Elements 102 /alue 100k Elements 2048 Elements 4096 Elements 8192 Elements 65536 50k lements 13107 Elements 262144 — Elements 524288 Elements 104857 Elements 2097152 Elements 419430 Elemente 838860 Nodes

Large batch training of LLMs

Techniques to scale the pre-training in production to large compute resources

- Larger batch size allows larger data parallel degree or reduce pipeline bubble by allowing increased gradient accumulation steps
- We are evaluating multiple strategies to increase batch size:
 - Learning rate scaling
 - Layer-wise adaptive learning rates (LARS,LAMB)
 - Increasing batch size as the training progresses
 - Second order optimizers

Credit: Marieme Ngom

Summary

- Gordon Bell 2024 finalist achieved 4.11exaFlops of BF16 throughput
- Increasing scale -> We have achieved progress in large scale initialization and collectives on Aurora
- Work ongoing for
 - fault tolerance
 - detecting network congestion and hangs
 - Large batch training

This research was funded in part and used resources of the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357

VÄINÖ HATANPÄÄ Assistant Computer Scientist vhatanpaeae@anl.gov

