
Experiences with Scaling AI Workloads
on Aurora

MARCH 18TH 2025

VÄINÖ HATANPÄÄ

Assistant Computer Scientist
vhatanpaeae@anl.gov

Argonne National Laboratory is a
U.S. Department of Energy laboratory
Managed by Argonne UChicago, LLC

Experiences with Scaling AI Workloads on Aurora

Presentation contents

1. Argonne Leadership Computing Facility

2. Gordon Bell 2024 finalist: MProt-DPO

3. Efficiently launching and running PyTorch at scale

4. Ongoing work for AI/ML performance at ALCF

Argonne National Laboratory is a
U.S. Department of Energy laboratory
Managed by Argonne UChicago, LLC

Argonne Leadership
Computing Facility

SIMULATION

ALCF provides supercomputers to enable
scientists to:

• To address grand challenges for the nation

• Perform research that is too complex and

expensive to do in a laboratory setting

• Keep the nation safe and competitive

#1 AI (HPL-MxP) supercomputer
and > 1 exaFLOPS.

System supports 3 types of
computing:

• Large-scale Simulations
• Data Intensive Applications

• AI for Science

COMPUTING RESOURCES

Next-generation AI platforms to
rapidly deploy and accelerate
state-of-the-art AI for science

ALCF AI TESTBED

Researchers with a large-scale

computing problem can apply to use

ALCF resources.

• Multiple allocation award

programs available to fit

your needs

LEARNING

DATA

INCITE

ALCC

DD

ALCF Systems Evolution

Aurora
Intel-HPE

2024

Crux
HPE-AMD

Polaris
HPE-NVIDIA

2021

+
Theta

Intel-Cray XC40

2017

Mira
IBM BG/Q
2012

Intrepid
IBM BG/P

2007
IBM BG/L

2004

ThetaGPU

NVIDIA

DGX A100

2020

5.7 TF

557 TF

10 PF
11.7 PF

15.6 PF

44 PF

>1 EF

JLSE (2013) AI Testbed (2020) Edge Testbed (2021)

Gordon Bell 2024 Finalist

MProt-DPO: Breaking the ExaFLOP Barrier for
Multimodal Protein Design Workflows with
Direct Preference Optimization

MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal
Protein Design Workflows with Direct Preference Optimization

Gautham Dharuman1†, Kyle Hippe1,2†, Alexander Brace1,2†, Sam Foreman1†, Vaino Hatanpaa1, Varuni K. Sastry1, Huihuo

Zheng1, Logan Ward1, Servesh Muralidharan1, Archit Vasan1, Bharat Kale1, Carla M. Mann1,2, Heng Ma1, Yun-Hsuan Cheng3,

Yuliana Zamora3, Shengchao Liu5, Chaowei Xiao6, Murali Emani1, Tom Gibbs3, Mahidhar Tatineni7, Deepak Canchi8, Jerome

Mitchell8, Koichi Yamada8, Maria Garzaran8, Michael E. Papka1,9, Ian Foster1,2, Rick Stevens1,2, Anima Anandkumar10∗,

Venkatram Vishwanath1,9∗, Arvind Ramanathan1,2∗

1Argonne National Laboratory, 2University of Chicago, 3NVIDIA Inc., 4Swiss National Supercomputing Center, 5University of California, Berkeley,
6University of Wisconsin-Madison, Madison, 7San Diego Supercomputing Center, 8Intel Corporation, 9University of Illinois Chicago, 10California

Institute of Technology

†Joint first authors, ∗Contact authors: venkat@anl.gov, anima@caltech.edu, ramanathana@anl.gov

6

Hypothesis: Multimodal language models can incorporate experimental
observables to constrain the generation of protein sequences

7

Simulations

Experimental
data

Databases

Scientific
literature

M
ul

ti-
m

od
al

 D
at

as
et

s

Applications

• Enzyme redesign to improve

catalytic activity with LLMs

• Antibody design with RF-

Diffusion + feedback

Simulation/ Experiment data

• Preference Optimization as a strategy to

balance novelty of sequences vs. design

constraints (e.g., GC content, catalytic

activity, binding affinities)

Latent Vector Representations

(Embeddings)

Multi-modal Models

inferred

relationships

?

?

?

Transformer

Networks

DPO implementation in Megatron-DeepSpeed

8

➢ Feed preference dataset via 2

separate dataloaders

Preferred
Dataloader

Unpreferred
Dataloader

M
o

d
e

l
R

e
f

M
o

d
e

l

Preferred
Dataloader

Unpreferred
Dataloader ➢ Difference in the ratio of preferred and unpreferred sequence log probabilities scaled

by beta and subject to negative log sigmoid to give DPO loss

➢ Model forward pass of concatenated tokens, labels,

and position IDs

➢ Reference model forward in torch.no_grad mode

➢ Tensor parallel cross entropy of model outputs to give

sequence log probabilities

Scaling across diverse supercomputing platforms for LLM training
campaigns

9

Accelerator Specifications Network Specifications

• Intel Data Center Max 1550 GPUs

• 128GB of memory

• Peak performance of 481 TFLOPS in FP16 and BF16

• NVIDIA Grace-Hopper (GH-200) processors

• Grace and Hopper with 128GB and 96GB of memory

• Peak performance of 900 TFLOPS in FP16 and BF16

• AMD MI250X GPUs

• 128GB of memory

• Peak performance of 383 TFLOPS in FP16 and BF16

• NVIDIA A100 SXM4 processors

• 64GB of memory

• Peak performance of 312 TFLOPS in FP16 and BF16

• NVIDIA H100 processors

• 80GB of memory

• Peak performance of 835 TFLOPS in FP16 and BF16

• HPE Slingshot 11 using Dragonfly Topology

• 10624 nodes

• 6 GPUs per node

• HPE Slingshot 11 using Dragonfly Topology

• 2048 nodes

• 4 GPUs per node

• HPE Slingshot 11 using Dragonfly Topology

• 9408 nodes

• 4 GPUs per node

• NVIDIA Mellanox Infiniband HDR with

Dragonfly+

• 3456 nodes

• 4 GPUs per node

• Infiniband NDR

• 400 nodes

• 8 GPUs per node

System

PDX

Leanardo

Frontier

ALPS

Aurora

Sustained Scaling of the 3.5B Model

▪ Sustained performance is for the entire training iterations, including the various communication

intensive phases as well as I/O.

• We achieve 4.11 EF (BF16) on

Aurora, sustained performance

• Linear scaling in throughput

across all systems

Efficiently launching and running PyTorch at
scale

Collective operations at scale

Allreduce of 30k+ ranks with large buffers

is nontrivial

• Ring-based reduce-scatter/all-gather is

able to utilize the bandwidth well until a

certain point, but does not scale

indefinitely due to the latency

component

• We utilized Rabenseifner’s

algorithm to get better performance

at large scale

https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf
https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf

Collective operations at scale

Performance improvements since SC24:

• Discovery and evaluation of multiple

environment variables for OneCCL and Libfabric

to tune the low-level communication stack

• Documented in ALCF docs

• Improvements in the network stack:

• PyTorch allreduce Tested up to

8192 nodes * 12 ranks. We are able to

complete an allreduce with good bandwidth

utilization

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0

500

1000

1500

2000

2500

3000

3500

4000

96 12288 24576 49152 98304

T
im

e
(s

)

B
u
s
B

W
 (

G
b
p

s)

Ranks (GPU tiles)

4GB Allreduce performance with oneCCL
(1e9 elem FP32)

BusBW/node Time

85% scaling from 8 nodes to 8192

https://docs.alcf.anl.gov/aurora/data-science/frameworks/oneCCL/

Computational details
Achieved 44.5% sustained mean FLOPS utilization (MFU) on Aurora

▪ Mixed precision compute.

• FP16/BF16 compute

• Gradient accumulation and sync in FP32 for numerical stability

▪ Aurora GPUs contain two compute tiles each

• We used “tile as a device” configuration, recommended on Aurora for Deep Learning applications

• 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node

• Achieved 107 TFLOPS per tile, 1280 TFLOPS per node

• OneCCL communication library used for optimized collectives for AI workloads on Intel GPUs,

similar to NCCL for Nvidia and RCCL for AMD

Initializing PyTorch at scale

• torch.distributed init will start a TCP
socket-based server on the first process
that will communicate information about
collectives and distributed setup

• PyTorch 2.4 brings significant
improvements to initialization times at
scale

• Our Gordon Bell software image was
based on PyTorch 2.1

• We made some hacks to be able to
initialize the distributed environment
for the scale runs

• Certain settings need to be tuned to allow
thousands of socket connections

Need to configure:

• Number of return sockets

— ulimit –n <somethingbig>

• Number of outstanding requests in
the socket queue

— Value set in
/proc/sys/net/core/somaxconn
We are investigating changing this
globally on Aurora. Workarounds
exist for now

8x, 70s improvement

Successful

start

Loading Python environments at scale
Package management tools such as conda can have tens of
thousands of small files

▪ Over 30000 files opened on 38400 ranks ->
>900 million metadata operations can cause filesystem
stalls for all users of the cluster

Many custom changes require an editable installation:

• As a quick solution for the Gordon Bell scaling runs, we
packaged the environment and broadcasted it with mpi4py

Should not be an issue for normal usage:

• Default environment is in the node image on Aurora,
does not need to load from the Lustre filesystem

• Copper (co-operative caching layer for scalable parallel data
movement in Exascale Supercomputers) recommended for
speeding up loading custom Python environments

Copper can be used at scale to reduce Lustre load

Credit: Kaushik Velusamy

https://docs.alcf.anl.gov/aurora/data-management/copper/copper/
https://docs.alcf.anl.gov/aurora/data-management/copper/copper/

Ongoing work

Fault tolerance and rapid saving or loading

Failures become more likely with increased scale

▪ LLM checkpointing with DAOS (Distributed

Asynchronous Object Storage)

 Total capacity: 230 PB

 Peak bandwidth: 30 TB/s with 1024 DAOS server

storage Nodes

▪ Universal checkpointing from DeepSpeed enables

converting a Zero-enabled checkpoint from one scale to
another

Upcoming work:

— How to integrate PyTorch fault tolerance with HPC

— How the communication libraries can handle fault
tolerance and dynamic communicator groups

Checkpointing a 1T Model (17TB) Using DAOS:

Achieved 1.4TB/s throughput on 512 Aurora nodes with

128 DAOS servers. At 512 nodes, the checkpoint was

written in ~13 seconds, significantly outperforming our

650 GB/s Lustre file system.

Credit: Huihuo Zheng

Investigating congestion and hangs with
Slingshot Cassini NIC performance counters
Ongoing work with Intel and HPE to understand and detect hangs

from NIC counters

▪ 1426 metrics to track, 8 NIC interfaces per node

Credit: Nathan Nichols

Large batch training of LLMs

Techniques to scale the pre-training in production to large compute resources

▪ Larger batch size allows larger data parallel degree

or reduce pipeline bubble by allowing increased

gradient accumulation steps

▪ We are evaluating multiple strategies to

increase batch size:

— Learning rate scaling

— Layer-wise adaptive learning rates

(LARS,LAMB)

— Increasing batch size as the training progresses

— Second order optimizers

Adopt and dShampoo

achieved similar loss
at 80k steps as
AdamW at 100k

Credit: Marieme Ngom

Argonne National Laboratory is a
U.S. Department of Energy laboratory
Managed by Argonne UChicago, LLC

Summary

▪ Gordon Bell 2024 finalist achieved 4.11exaFlops of BF16 throughput

▪ Increasing scale -> We have achieved progress in large scale initialization and
collectives on Aurora

▪ Work ongoing for

— fault tolerance

— detecting network congestion and hangs

— Large batch training

This research was funded in part and used resources of the Argonne Leadership Computing Facility

(ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357

VÄINÖ HATANPÄÄ

Assistant Computer Scientist
vhatanpaeae@anl.gov

	Slide 1: Experiences with Scaling AI Workloads on Aurora
	Slide 2: Experiences with Scaling AI Workloads on Aurora
	Slide 3
	Slide 4
	Slide 5: Gordon Bell 2024 Finalist MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization
	Slide 6: MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization
	Slide 7: Hypothesis: Multimodal language models can incorporate experimental observables to constrain the generation of protein sequences
	Slide 8: DPO implementation in Megatron-DeepSpeed
	Slide 9: Scaling across diverse supercomputing platforms for LLM training campaigns
	Slide 10: Sustained Scaling of the 3.5B Model
	Slide 11: Efficiently launching and running PyTorch at scale
	Slide 12: Collective operations at scale
	Slide 13: Collective operations at scale
	Slide 14: Computational details
	Slide 15: Initializing PyTorch at scale
	Slide 16: Loading Python environments at scale
	Slide 17: Ongoing work
	Slide 18: Fault tolerance and rapid saving or loading
	Slide 19: Investigating congestion and hangs with Slingshot Cassini NIC performance counters
	Slide 20: Large batch training of LLMs
	Slide 21: Summary
	Slide 22

