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Argonne Leadership 
Computing Facility

SIMULATION

ALCF provides supercomputers to enable 
scientists to:

• To address grand challenges for the nation

• Perform research that is too complex and 

expensive to do in a laboratory setting

• Keep the nation safe and competitive

#1 AI (HPL-MxP) supercomputer 
and > 1 exaFLOPS. 

System supports 3 types of 
computing: 

• Large-scale Simulations
• Data Intensive Applications

• AI for Science

COMPUTING RESOURCES

Next-generation AI platforms to 
rapidly deploy and accelerate 
state-of-the-art AI for science

ALCF AI TESTBED

Researchers with a large-scale 

computing problem can apply to use 

ALCF resources.

• Multiple allocation award 

programs available to fit 

your needs

LEARNING

DATA

INCITE

ALCC

DD



ALCF Systems Evolution
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Gordon Bell 2024 Finalist

MProt-DPO: Breaking the ExaFLOP Barrier for 
Multimodal Protein Design Workflows with 
Direct Preference Optimization
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Hypothesis: Multimodal language models can incorporate experimental 
observables to constrain the generation of protein sequences 

7

Simulations

Experimental 
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Applications

• Enzyme redesign to improve 

catalytic activity with LLMs

• Antibody design with RF-

Diffusion + feedback

Simulation/ Experiment data

• Preference Optimization as a strategy to 

balance novelty of sequences vs. design 

constraints (e.g., GC content, catalytic 

activity, binding affinities)

Latent Vector Representations 

(Embeddings) 

Multi-modal Models 

inferred 

relationships

?

?

?

Transformer 

Networks



DPO implementation in Megatron-DeepSpeed
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➢ Feed preference dataset via 2 

separate dataloaders

Preferred 
Dataloader

Unpreferred 
Dataloader
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Preferred 
Dataloader

Unpreferred 
Dataloader ➢ Difference in the ratio of preferred and unpreferred sequence log probabilities scaled 

by beta and subject to negative log sigmoid to give DPO loss 

➢ Model forward pass of concatenated tokens, labels, 

and position IDs 

➢ Reference model forward in torch.no_grad mode

➢ Tensor parallel cross entropy of model outputs to give 

sequence log probabilities



Scaling across diverse supercomputing platforms for LLM training 
campaigns
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Accelerator Specifications Network Specifications

• Intel Data Center Max 1550 GPUs

• 128GB of memory 

• Peak performance of 481 TFLOPS in FP16 and BF16

• NVIDIA Grace-Hopper (GH-200) processors

• Grace and Hopper with 128GB and 96GB of memory

• Peak performance of 900 TFLOPS in FP16 and BF16

• AMD MI250X GPUs

• 128GB of memory

• Peak performance of 383 TFLOPS in FP16 and BF16

• NVIDIA A100 SXM4 processors

• 64GB of memory 

• Peak performance of 312 TFLOPS in FP16 and BF16

• NVIDIA H100 processors

• 80GB of memory 

• Peak performance of 835 TFLOPS in FP16 and BF16

• HPE Slingshot 11 using Dragonfly Topology

• 10624 nodes

• 6 GPUs per node

• HPE Slingshot 11 using Dragonfly Topology

• 2048 nodes

• 4 GPUs per node

• HPE Slingshot 11 using Dragonfly Topology

• 9408 nodes

• 4 GPUs per node

• NVIDIA Mellanox Infiniband HDR with 

Dragonfly+

• 3456 nodes

• 4 GPUs per node

• Infiniband NDR

• 400 nodes

• 8 GPUs per node

System

PDX

Leanardo

Frontier

ALPS

Aurora



Sustained Scaling of the 3.5B Model

▪ Sustained performance is for the entire training iterations, including the various communication 

intensive phases as well as I/O. 

• We achieve 4.11 EF (BF16) on 

Aurora, sustained performance

• Linear scaling in throughput 

across all systems



Efficiently launching and running PyTorch at 
scale 



Collective operations at scale

Allreduce of 30k+ ranks with large buffers 

is nontrivial

• Ring-based reduce-scatter/all-gather is 

able to utilize the bandwidth well until a 

certain point, but does not scale 

indefinitely due to the latency 

component

• We utilized Rabenseifner’s 

algorithm to get better performance 

at large scale

https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf
https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf


Collective operations at scale

Performance improvements since SC24:

• Discovery and evaluation of multiple 

environment variables for OneCCL and Libfabric 

to tune the low-level communication stack

• Documented in ALCF docs

• Improvements in the network stack:

• PyTorch allreduce Tested up to 

8192 nodes * 12 ranks. We are able to 

complete an allreduce with good bandwidth 

utilization
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85% scaling from 8 nodes to 8192

https://docs.alcf.anl.gov/aurora/data-science/frameworks/oneCCL/


Computational details
Achieved 44.5% sustained mean FLOPS utilization (MFU) on Aurora

▪ Mixed precision compute. 

• FP16/BF16 compute

• Gradient accumulation and sync in FP32 for numerical stability

▪ Aurora GPUs contain two compute tiles each

• We used “tile as a device” configuration, recommended on Aurora for Deep Learning applications

• 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node

• Achieved 107 TFLOPS per tile, 1280 TFLOPS per node

• OneCCL communication library used for optimized collectives for AI workloads on Intel GPUs, 

similar to NCCL for Nvidia and RCCL for AMD



Initializing PyTorch at scale

• torch.distributed init will start a TCP 
socket-based server on the first process 
that will communicate information about 
collectives and distributed setup

• PyTorch 2.4 brings significant 
improvements to initialization times at 
scale

• Our Gordon Bell software image was 
based on PyTorch 2.1

• We made some hacks to be able to 
initialize the distributed environment 
for the scale runs

• Certain settings need to be tuned to allow 
thousands of socket connections

Need to configure:

• Number of return sockets

— ulimit –n <somethingbig>

• Number of outstanding requests in 
the socket queue

— Value set in 
/proc/sys/net/core/somaxconn 
We are investigating changing this 
globally on Aurora. Workarounds 
exist for now

8x, 70s improvement

Successful 

start



Loading Python environments at scale
Package management tools such as conda can have tens of 
thousands of small files 

▪ Over 30000 files opened on 38400 ranks ->
>900 million metadata operations can cause filesystem 
stalls for all users of the cluster

Many custom changes require an editable installation:

• As a quick solution for the Gordon Bell scaling runs, we 
packaged the environment and broadcasted it with mpi4py

Should not be an issue for normal usage:

• Default environment is in the node image on Aurora, 
does not need to load from the Lustre filesystem

• Copper (co-operative caching layer for scalable parallel data 
movement in Exascale Supercomputers)  recommended for 
speeding up loading custom Python environments

Copper can be used at scale to reduce Lustre load

Credit: Kaushik Velusamy

https://docs.alcf.anl.gov/aurora/data-management/copper/copper/
https://docs.alcf.anl.gov/aurora/data-management/copper/copper/


Ongoing work



Fault tolerance and rapid saving or loading

Failures become more likely with increased scale

▪ LLM checkpointing with DAOS (Distributed 

Asynchronous Object Storage)

 Total capacity: 230 PB

 Peak bandwidth: 30 TB/s with 1024 DAOS server 

storage Nodes

▪ Universal checkpointing from DeepSpeed enables 

converting a Zero-enabled checkpoint from one scale to 
another

Upcoming work:

— How to integrate PyTorch fault tolerance with HPC

— How the communication libraries can handle fault 
tolerance and dynamic communicator groups

Checkpointing a 1T Model (17TB) Using DAOS: 

Achieved 1.4TB/s throughput on 512 Aurora nodes with 

128 DAOS servers. At 512 nodes, the checkpoint was 

written in ~13 seconds, significantly outperforming our 

650 GB/s Lustre file system. 

Credit: Huihuo Zheng



Investigating congestion and hangs with 
Slingshot Cassini NIC performance counters
Ongoing work with Intel and HPE to understand and detect hangs 

from NIC counters

▪ 1426 metrics to track, 8 NIC interfaces per node

Credit: Nathan Nichols



Large batch training of LLMs

Techniques to scale the pre-training in production to large compute resources 

▪ Larger batch size allows larger data parallel degree 

or reduce pipeline bubble by allowing increased 

gradient accumulation steps

▪ We are evaluating multiple strategies to 

increase batch size:

— Learning rate scaling

— Layer-wise adaptive learning rates 

(LARS,LAMB)

— Increasing batch size as the training progresses

— Second order optimizers

Adopt and dShampoo 

achieved similar loss 
at 80k steps as 
AdamW at 100k 

Credit: Marieme Ngom
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Summary

▪ Gordon Bell 2024 finalist achieved 4.11exaFlops of BF16 throughput

▪ Increasing scale -> We have achieved progress in large scale initialization and 
collectives on Aurora

▪ Work ongoing for

— fault tolerance

— detecting network congestion and hangs

— Large batch training

This research was funded in part and used resources of the Argonne Leadership Computing Facility 

(ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357
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