linaroforge

Maintaining HPC debugging and
performance engineering

leadership o
Rudy Shand ; :
Principal FAE
Linaro ‘
|
S0S27 Workshop]

March 17-20, 2025
Engelberg, Switzerland

linaroforge

HPC Development Solutions from Linaro

Best in class commercially supported tools for Linux and
high-performance computing (HPC)

Linaro Forge

X 5 |[O

Debug Profile Analyse
Linaro DDT Linaro MAP Linaro

Performance Reports

Performance Engineering for any architecture, at any scale

linaroforge

Collaboration

Leveraging the power of community

GDB is the underlying DDT debugger
e Linaro upstreams patches to the GDB community
e Forge team raises and fixes GDB bugs

Nimble at supporting new technologies
e Rely on Hardware vendors to add GDB support
e Rely on Software consortiums to add GDB support
e Helps us to stay current, state of the art debugger

linaroforge

Innovation

Finding effective solutions to difficult problems

Scalable Tree Network
Treeserver design is how is how Forge

is able to scale across processes
Send bulk commands and merge
responses

Aggregate the data instead of
broadcasting hundreds / thousands
responses

Tree network topology

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

linaroforge

Effort

Investing time and energy into what matters

Collect samples MAPThread-

Sampler

A
A \@ "

MAPSampler

b—4

GPUProfiler

e MAP Thread Sampler. Samples across threads
Python Profiler: Profiles the Python interpreter
GPU profiler. Obtain data on CUDA kernels
Metric libraries: Core set of performance metrics
Linux Perf. Collects Linux perf metrics

Metric

Adaptive sampling
e The sampling frequency of MAP automatically

decreases over time to ensure a manageable amount Python-
of data is collected Profiler

e Keeps overhead and file sizes low

MAP Capabilities

MAP is a sampling based scalable profiler
e Built on same framework as DDT
e Parallel support for MPI, OpenMP, CUDA
e Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
e Stack traces
e Augmented with performance metrics

Cycles per instruction 0.90 |1 i, AN P e
0.83
0
CPU Cycles 55.3 e —
515G/s
0
Instructions 97.7 B) » §
ol et i o e i it
61.5G/s i

L2 Cache Accesses
379M/s

0
L2 Cache Misses 278
125 M /s

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

Application activity

CPU floating-point €y 2 u.u . Lla

31.9% P Y SO = S S R
Memory usage oty
I
149 MB
W

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation %, OpenMP overhe:

F hydro.foo X

L timestep()

PAV (. TRUE.)

accelerate()
CALL PdV(.FALSE.)

2.6% . . . 60 CALL flux_calc()
o

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |

OpenMP Stacks
Total core time A MPI Overhead Function(s) on line Source
= & clover_leaf [program]
= # clover_leaf CALL clover_init_comms ()
= hydro CALL hydro
39.7% smmesmsss Mestwsenun] <0.1% advection_module::advection CAL n ()
18.1% — 8.3% <0.1% # timestep_module::timestep CALL timestep()
70% _ 0.7% # pdv_module::pdv CALL PdV(.TRUE.)
7.0% o <0.1% [+ visit IF (visit_frequency.NE.0) CALL visit ()
5.0% . __._. I 1.2% <0.1% # pdv_module::pdv CALL PdV(.FALSE.)
31% . o [accelerate_module::accelerate CALL accelerate()
26% . . L <0.1% # flux_calc_module::flux_calc CALL flux_calc()
23% <0.1% & reset_field_module::reset_field CALL reset_field()

Showing data from 32,000 samples taken over 32 processes (1000 per process)

linaroforge

Debugging and Profiling to exascale and beyond!

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

e _

CPU floating-point H
31.9%
N
Memory usage e [
149 MB

07:59:11-08:05:59 (408.1095): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File 1/0 8.6 %, Synchronisation 0.0 %, OpenMP overhe:

7 hydro.fo0 X

L accelerate ()

PdV (.FALSE.)
. CALL flux_cale()
Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks
Total core time A MPI_ Overhead Function(s) on line Source
= # clover_leaf [program]
= (“i ii‘ AL C) I
Q Throad Aty Advisor

- =1 e o3

g
39.7% smsssemin s
. b 83% <01

Pracess Command: Seioctan inddul process.

| openwe oer

Data taken at: Finalization

Showing data from 32,000 samples taken over 32

Process-spclc env vas fanks 0-55)

SLURM_CRU_BIND et
SLURM_GPU_BIND_LIST 0000
SLURM_CoU_BIND TYPE maskc

SLURM_CPU_BIND_VERBOSE culet (

SLURM_DISTRBUTION block
StuR_GTIoS 0123
SLURM_LAUNGH_NODE IPADDR. 10128

StuRM_LocALD 1 eanh

StmMNPROCS M matile toms seected)
Commentay:

fronerd0333 (2 s nodes)
fronter00334 (3 simiarnodes)
ronter00353 (0 simiar nods)

—
ncoreo oo |
e |
ee— |
s posooa [
wnceposen |

e Highly scalable architecture
Rich set of features
e Cross platform

File Edit View Control Tools Window Help
>l B R EEBEIEElI! OO

Focus on current: ® Process) Thread

GPU Threads (MatrixMulHIP(float*... slock [3[3] [2[2] [0]7] mhwead [5 |2 [18 2] [0]7]

Thr

Grid size: 4x4x1 Block size: 32x32x1

Project Files E‘]‘ ™ matrixMul.cpp X Lo.. Curre.. Curr.. ‘ GP... ‘
Search (Ctrl+K) \ LN 19 int i = blockIdx.y * blockDim.y + threz* GPU Devices e®
~ & Application Code ;61) int j = blockIdx.x * blockDim.x + threg Attribute Name Value

»om ~ Ranks 0

em 22 ~ for(int k = 0; k < wA; k++) ~ vega20 2 Devices
=« s 01

— rowrs t 24 temp += A[i * wA + k] * B[kx wB + Threads 2400
onstantlr
25 3} Cores 240

® main(intal © 26 |
® MatrixMul 27
® MatrixMul 28
® MatrixMul 29 1}

C[i *xwB + j] = temp;

syncthreads();

Threads in selected processes:
Mai thread (WP 510938) 014
Mainhread (LWP 510939) 028
Mai thread (LWP 510840) 042
Mai thread (LWP 510941) 055

» & External Code 30

31 v __global__ void MatrixMulHIPShared(float *(

2 {

33 // Block row and column
. ok 24 int hlackRow = hlockTdy - 5 =
Kernel Progress View ‘ Input/Output Breakpoints ~ Watchpoints ~ Stacks Evaluate e®
Kernel Progress View 88 Narne Value

Kernel Progress \INA _fzzg
MatrixMul... wB 128
temp 1.27999914

D not scheduled . scheduled - selected How do | interpret GPU kernel progress?

linaroforge

Notable achievements over the years

AMD GPU Debugging and Profiling
o In partnership with ORNL, AMD, and HPE, delivered for the Frontier system

Intel GPU debugging
o In partnership with ANL and Intel, delivered for the Aurora system

Caliper support
o Introduction of Caliper instrumentation in MAP, in partnership with LLNL

Arm Compiler for Linux

o Collaboration with SNL to ensure debugger compatibility with the Vanguard Astra system, including
adding support for ACfL

Thread Affinity Advisor feature
o Collaboration with SNL and CSCS on the new Thread Affinity Advisor feature

Machine Learning
o Collaborating with CSCS and ANL on ML Performance Reports

N\

TN

Thank you

p:r

s s W/ \:\&“ e BERL A AT
\\ Z Ji 1 SN

A

M

linaroforge

Go to www.linaroforge.com

