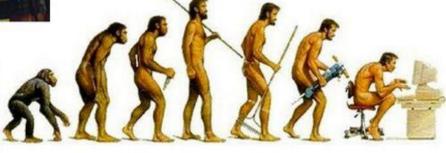

Technologies for Future HPC and Al Systems

Dr. Robert W. Wisniewski HPE Fellow Chief Architect HPC and Al Solutions

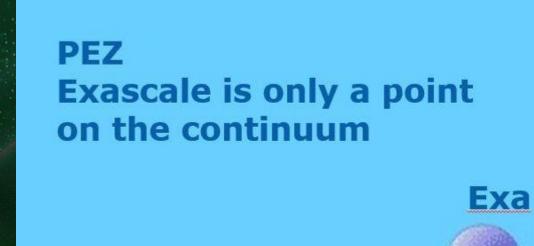
March 18, 2025

Exascale Architecture Plans (2008)

The Swim Lanes


Obligatory Exascale Swim Lanes Slide

How to Get There


Revolutionary versus Evolutionary

• Which one ?

PEZ – A Continuum

Zeta

Source: Wisniewski SOS 2014

HPE Large-Scale HPC and AI Machines

Helping organizations tackle the grand challenges of humankind

37,632

63,744

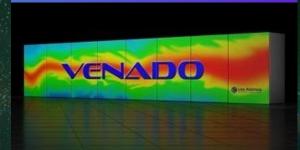
44,544

GPUs

GPUs

APUs

100% liquid-cooled HPE Cray EX supercomputer


High performance GPU accelerated blades

HPE Slingshot exascale interconnect

Cray ClusterStor file systems

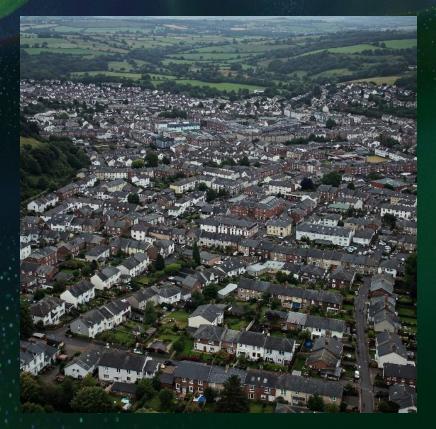
Enabling Large-Scaling AI Workloads Around the Globe

10 EFLOPS

single-precision AI Performance with NVIDIA GH200 superchips

20 EFLOPS

single-precision AI Performance with NVIDIA GH200 superchips


21 EFLOPS

single-precision AI Performance with NVIDIA GH200 superchips

Power – A Little or A Lot

- Frontier 22.7 MW (https://en.wikipedia.org/wiki/Frontier_(supercomputer))
- Aurora 38.7 MW (https://en.wikipedia.org/wiki/Aurora_(supercomputer))

• Combined powers a small city (40K people)

Power - A Little or A Lot

- GPT-4 training used over 50 gigawatt-hours
 - 0.02% of the electricity California generates in a year
 - 2200 hours or 92 days on Frontier
 - 10T mode estimate 5000 gigawatt-hours
- LHC 200 MW

Power – A Little or A Lot

- The Gigawatt Data Center Campus is Coming
- Amazon Web Services recently bought a data center co-located with a nuclear power facility, where it hopes to gradually deploy up to 960 megawatts
- https://www.datacenterfrontier.com/hyperscale/article/ /55021675/the-gigawatt-data-center-campus-iscoming

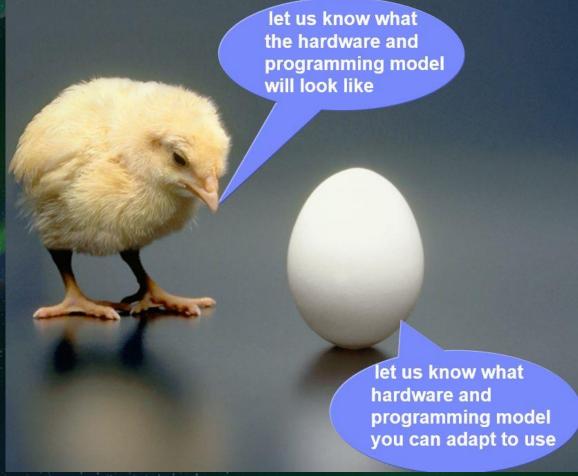
Parallelism and Fat versus Thin Nodes

- Sequoia 20PF circa 2012, had 96 racks *1024 nodes/rack +16 cores/node == 1,572,864 *4 threads/core = 6,291,456 threads
- Concern was we would need 50x that number of threads

https://en.wikipedia.org/wiki/Sequoia_(supercomputer)

Parallelism and Fat versus Thin Nodes

image source: Oak Ridge National Lab


- Frontier is 74 cabinets, 128 nodes per cabinet
 - 1 AMD Epyc 7713 "Trento" CPU and 4 AMD Instinct MI250X GPUs per node
- Frontier has 9,472 CPUs * 64 cores/CPU == 606,208 cores * 2 threads/core == 1,212,416 threads
- Frontier has 37,888 GPUs each GPU has 2 GCD (Graphic Compute Dies) with 110 CU (Compute Units) per die == 8,335,360 cores with 64 threads (a wavefront) = 533,463,040 threads

Parallelism and Fat versus Thin Nodes

- Sequoia 6,291,456 threads
- Frontier
 - 1,212,416 CPU threads
 - 533,463,040 GPU threads
- The number of GPU threads exceeds what we thought thread count would be
 - The number of CPU threads is meaningfully less than predicted
 - GPU hardware and software help hide that high degree of parallelism
- Fat nodes help significantly
 - Lower surface to volume ratios reduces global communication
 - Fewer OSes put less pressure on the reliability of each instance
 - Fewer nodes ease the burden of providing scalable and reliable system management software

Software and Programming Model

- Programming model did not substantially change
 - -Did not need all new language/runtime and model
 - -MPI + X still here
 - -Kokkos and Raja emerged and their usage broadened
 - -Kokkos also helping drive C++ standards
- Moving to GPUs was a massive effort, but primarily due to accelerator model and parallelism rather than the GPU itself
- Fat nodes relieve some of the software scalability challenges
 - Helped with reliability challenges due to absolute number of instance of software stack running
 - Has not solved hardware MTBF

Source: Wisniewski Salishan 2011

Where We are Going: Taking Stock

- Thought we were going to do it in 20MW
 - Many people did not think so, but that was the target
- Thought it was going to take a new programming model and rewrite of all codes
 - There was a massive effort to restructure codes for GPUs
 - –Will the work that was done, at least for the codes that utilized Kokkos or Raja, carry forward
- Thought parallelism was going to swamp us
 - It grew, but we managed to [mostly] hide it with a hierarchical layer
- Thought reliability was going to require fault tolerant computing
 - We managed to eke this one out, but MTBF for capability jobs is counted in hours now
- New theme: mixed precision playing an increasing important role
- New theme: Al
- HPC has become like an aircraft carrier

Source: Al generated

Source: Al generated

Where We Are Going: Technical Themes

- Hide complexity behind a layer
 - Threading, parallelism: small and large, programming model
- Improve performance through tighter coupling
 - Compute to memory, compute to compute, compute to communication
- Macro heterogeneity
 - Quantum common example, but perhaps more : Al training, Al inference, HPC
- Handle reliability
 - Enhance approach to fault tolerance, tolerate failures in the small at least
- Complex workflows
 - Spanning machines and sites
 - Spanning edge to supercomputer to cloud
 - Containing massive and secured data
- Sustainability and power

Arkouda

An open-source Python package providing interactive data analytics at supercomputing scale.

>>> Transform the way you work with big data

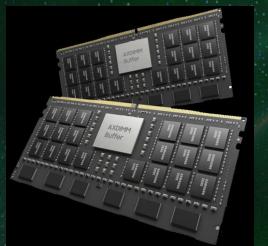
EASY TO USE

Provides an API data scientists are familiar with based on Pandas/NumPy

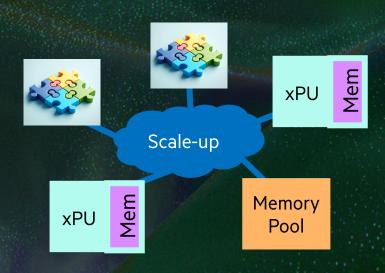
POWERED BY CHAPEL

Powered by a parallel distributed server written in Chapel

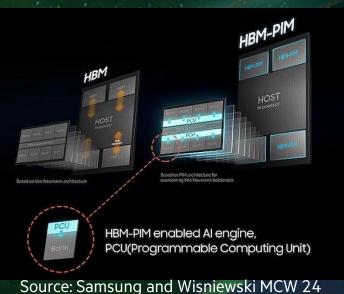
FAST & SCALABLE

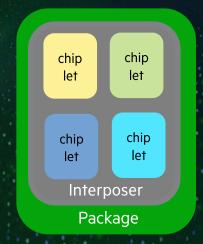

Outperforms NumPy on a single Node and has scaled up to 8,000+ Nodes

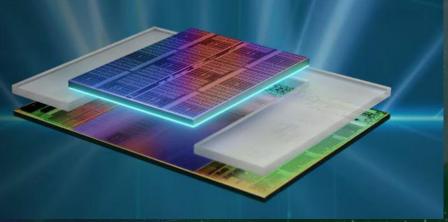
EXTENSIBLE & CUSTOMIZABLE

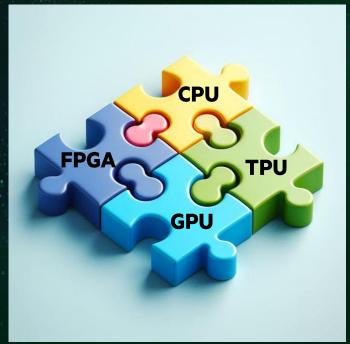

Extend Arkouda's capabilities by creating specialized functions

Tight Coupling


Samsung AXDIMM


Source: Samsung and Wisniewski MCW 24


Source: Al generated


Compute to memory
Compute to compute
Compute to communication

AMD V-Cache

https://www.amd.com/en/products/processors/ technologies/3d-v-cache.html

Source: Al generated

Quantum Computing Integration at HPE

Integrating classical and quantum systems

to harness diverse accelerators that maximize run-time, efficiency, sustainability, and security

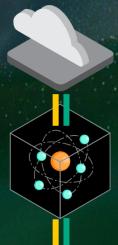
Unified workflow environment

Simplify the end user experience

Software framework to harness accelerators most suitable for each segment of a workflow

Large-scale quantum simulation

Toward industrial scale


HPC systems used to simulate and test quantum advancements

Quantum-inspired accelerators

Solve intractable problems

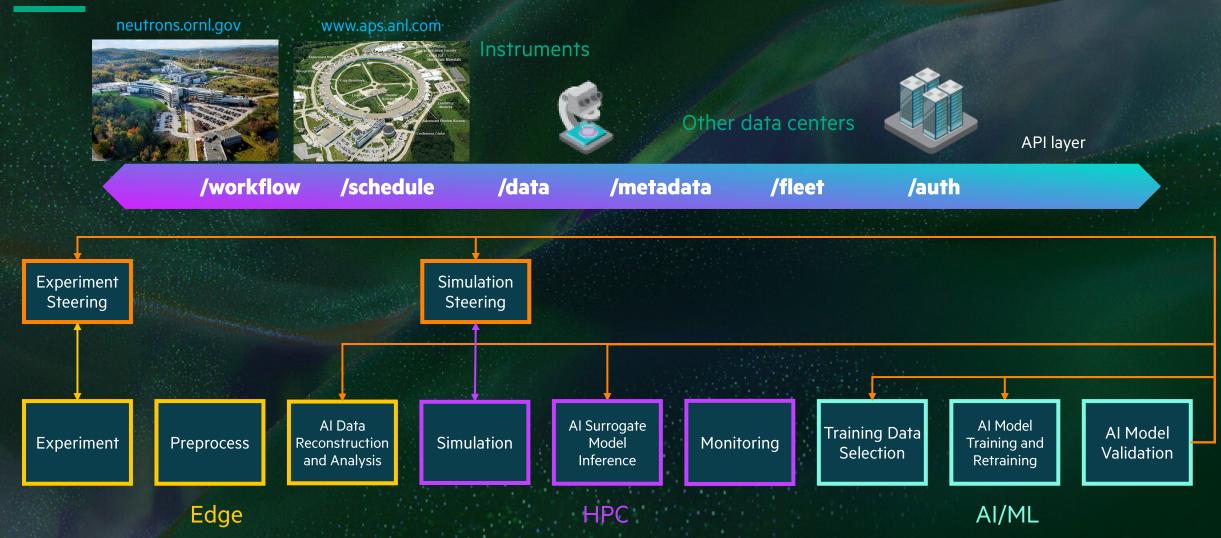
Non-conventional acceleration of algorithms explored by the quantum computing community

Integration of quantum accelerators

Hewlett Packard **Labs**

HPE HPC & Al Business Group

Innovation partners

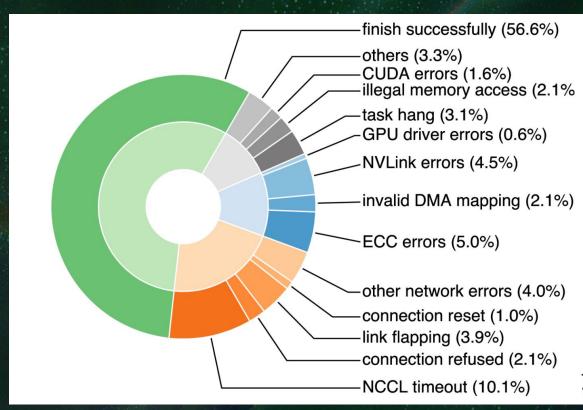

(academic, industrial, government)

Heterogenous computing development

Quantum computing development

Common Federation Framework: Workflow Deployment SDK

Enables Federated Hybrid Workflows on Data from Edge to Extreme Scale to Cloud



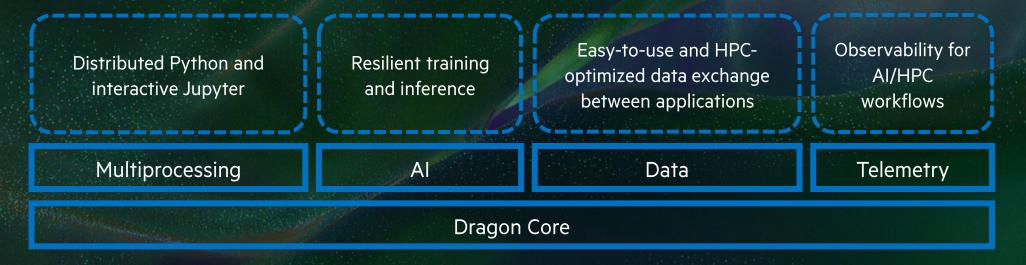
Al Strategy

- HPE delivers the most HPC computing on the top 500
 - HPE sells over 2x the amount of dedicated AI computing as HPC computing
- Driving to make common AI frameworks work out of the box on our systems
 - Working to address networking, compiler, development, etc. issues
- We will leverage our expertise to augment and enhance AI systems
 - Provide tools and capability to scale AI and get it to be reliable
 - Provide frameworks to connect HPC to Al
 - Provide tools to build and deploy federated AI workflows

What Happens at Scale

• As leadership-class AI workloads have grown, concerns about reliability have increased

Component	Category	Interruption Count	% of Interruptions	
Faulty GPU	GPU	148		
GPU HBM3 Memory	GPU	72	17.2%	
Software Bug	Dependency	Dependency 54		
Network Switch/Cable	Network 35		8.4%	
Host Maintenance	Unplanned Maintenance	32	7.6%	
GPU SRAM Memory	GPU 19		4.5%	
GPU System Processor	GPU	17	4.1%	
NIC	Host	7	1.7%	
NCCL Watchdog Timeouts	Unknown	7	1.7%	
Silent Data Corruption	GPU	6	1.4%	
GPU Thermal Interface + Sensor	GPU	6	1.4%	
SSD	Host	3	0.7%	
Power Supply	Host	3	0.7%	
Server Chassis	Host	2	0.5%	
IO Expansion Board	Host	2	0.5%	
Dependency	Dependency	2	0.5%	
CPU	Host	2	0.5%	
System Memory	Host	2	0.5%	


Table 5 Root-cause categorization of unexpected interruptions during a 54-day period of Llama 3 405B pre-training. About 78% of unexpected interruptions were attributed to confirmed or suspected hardware issues.

https://arxiv.org/pdf/2401.00134

https://arxiv.org/pdf/2407.21783

Coupling AI and HPC

Dragon is a composable distributed runtime that enables users to create sophisticated, scalable, resilient, and highperformance AI/HPC applications, workflows, and services through standard Python interfaces.

- 2 100X faster data processing than Ray
- Scalable to over 1000 nodes
- Multi-system features offer a hybrid experience, spanning from laptop to supercomputers

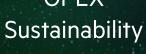
- Open-source or HPE-optimized packages
- Well-documented with numerous cookbook examples and easy setup

https://developer.hpe.com/platform/dragonhpc/home/ https://github.com/DragonHPC/dragon

Holistic Power and energy Management (HPM)

Concept: System Administrator and/or User define optimization policy

Minimum resources


Maximum performance

Holistic power and energy management tools

HPE's automatic workload control delivers desired outcome

Possible constraints

Power Cooling OPEX

Monitoring

- Data
- Events
- Decisions

- Dynamically balance between available power/cooling, optimized resource usage, and workload performance
- Balance facility efficiency and system operation with minimal performance impact

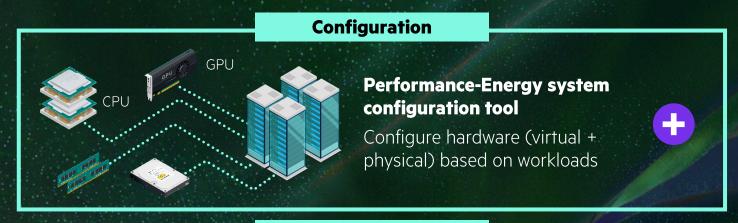
^{*} Potentially up to 50+% power and TCO savings

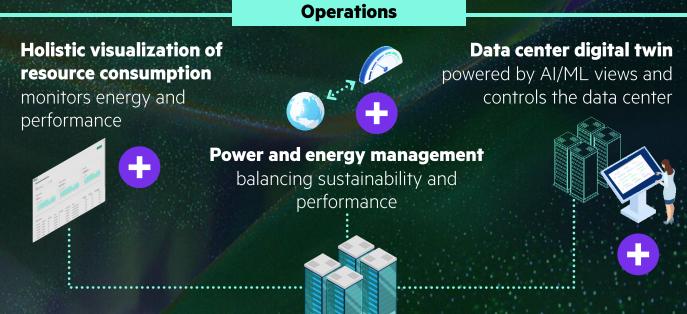
A TCO Savings Example

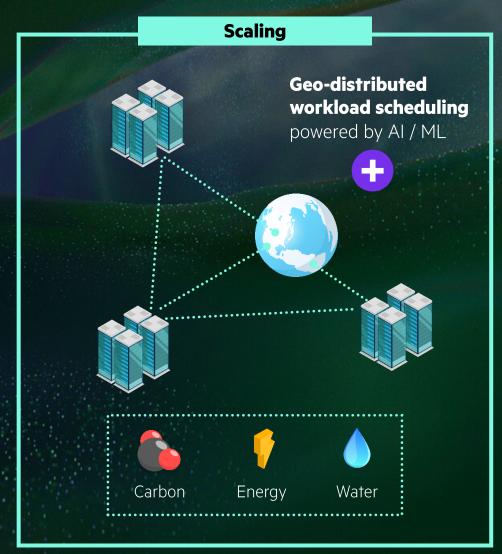
Estimates for 8 theoretical racks (each 200kW IT nameplate power)	No Management	Uniform Static	Strategy 1	Combine (Strategy 1&2)	Combine (Strategy 1&2)
Application Performance	100%	>90%	>99.1%	>95%	>90%
IT compute power (MW)	1.6	1.2	1.2	0.9	0.7
Facility Power procured (MW)	2.3	1.7	1.7	1.2	1.0
OPEX 5 years (Million US)	>=8.4	8.4	8.4	6.0	5.0
CAPEX savings (Million US)	0.0	4.3	4.3	7.5	9.3
OPEX savings over 5 years(Million US)	0.0	0.0	0.0	2.4	3.4
Potential annual OPEX savings (Million US)	0.0	0.0	0.0	0.5	0.7
Perf/procured Watt efficiency (relative)	1.00	1.23	1.35	1.79	2.14


Racks

- Publicly vendors have stated chip powers through 1200W
 - https://www.theregister.com/2024/03/18/nvidia_turns_up_the_ai/
 - Likely to increase 2x
 - Keeping current density drives significant rack power and cooling challenges




Cooling efficiency and capacity (kW/rack) increases from left to right


Leadership Class Performance

- The fastest and most capable HPC/AI solutions are ready for the future, with cutting-edge chip technology, advanced workload software and the latest in high-speed fabric
- Open Standards
 - An open rack framework with industry standard OCP motherboards decrease time to market while being adaptable with rapidly changing HPC and emerging Al-focused architectures
- Revolutionary Cooling
 - Innovative power management and cooling infrastructure enables customers to match workload needs and sustainability goals with warm facility water

The Future of Sustainable Data Centers

