

Energy-Efficient Computing for AI and HPC

Michael Schulte Senior Fellow, AMD Research

S0S27 May 18-20, 2025

The Problem

Data Center Energy Consumption

How We Got Here – 5 Decades of Innovations

> 2000 times higher frequency
Supercomputers are ~17 billion times faster

> 3000 times smaller

4

Trends – GPU Power Efficiency

GPU Single Precision FLOPs/Watt

AMD together we advance_

Need Continues to Increase

Supercomputer Energy Use Trajectory

Green500 supercomputer GFLOPs/watt and projection

AMD together we advance_

7

The Opportunity

Domain-specific computation enables compute efficiency

Tailor architecture for application

Adapt algorithms to use lower precision number formats for significant improvements in energy efficiency

Need to determine appropriate precisions

Based on AMD internal calculations

Bit allocations by format

FLOPs/Joule normalized to FP32

Reducing Data Movement Energy

3D Chiplets and Communication Energy

Advanced Packaging Provides up to a 50x Reduction in Communication Power

INTERNAL AMD DATA

Thirst for Memory Bandwidth

- High bandwidth memory feeds the compute engine providing a key element of performance gains
- Limited efficiency gains combine with demand growth result in higher percentage of power for memory

AMD together we advance_

Reducing Memory Energy

[Public

Processing in Memory

Key algorithmic kernels can be executed directly in memory, saving precious data movement energy

System Power by Function

- Historical trends for model growth and system requirements point to a doubling of network bandwidth every two years
- Even if compute power can be contained, network and IO power will grow
- In two generations, we expect network+IO power to dominate compute node power in AI systems
- Lower power solutions are needed

Optical Communication for Energy Efficient Networks

Co-packaged optics can provide a path forward Reach and BW density reduces switch and re-timer power Path to ~1 pJ/bit and optical circuit switches for greater efficiency Tight integration of optical transceivers to compute die is a key to efficiency

Algorithm-Software-Hardware Co-Design

- Combination of algorithms, software, and architecture have been and will continue to be a critical lever.
- We can also leverage AI to make the entire system more efficient.

Meeting the Challenge Requires Holistic Innovation

- Hardware architecture
- Advanced packaging
- New interconnects and memory
- System level integration
- SW optimizations
- Intelligent design and management
- Algorithm-software-hardware co-design

Final Thought

Copyright and Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, EPYC, Instinct, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.