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The Problem
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Data Center Energy Consumption
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> 2000 times higher frequency
Supercomputers are ~17 billion times faster

> 3000 times smaller

How We Got Here – 5 Decades of Innovations
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Language Model Training

Based on published parameter counts of leading training models; and AMD internal calculations 

Exponentially growing model sizes drive immense 
growth in energy for training.

The upper bound on training requirements is 
yet to be determined.
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Supercomputer Energy Use Trajectory
Green500 supercomputer GFLOPs/watt and projection
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The Opportunity
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Domain-specific computation 
enables compute efficiency

Tailor architecture for application

Adapt algorithms to use lower precision number formats 
for significant improvements in energy efficiency

Need to determine appropriate precisions

Based on AMD internal calculations
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Reducing Data Movement Energy

Data movement energy increases 
with distance Maximizing locality is key to efficiency
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Thirst for Memory Bandwidth
 High bandwidth memory feeds the compute engine 

providing a key element of performance gains
 Limited efficiency gains combine with demand 

growth result in higher percentage of power for 
memory
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Reducing Memory Energy
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Processing in Memory

 Key algorithmic kernels can be executed directly in memory, saving 
precious data movement energy
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System Power by Function

 Historical trends for model growth and system 
requirements point to a doubling of network 
bandwidth every two years

 Even if compute power can be contained, network 
and IO power will grow

 In two generations, we expect network+IO power 
to dominate compute node power in AI systems

 Lower power solutions are needed
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Optical Communication for Energy Efficient Networks

Path to ~1 pJ/bit and 
optical circuit 

switches for greater 
efficiency

Co-packaged optics 
can provide a path 

forward

Tight integration of 
optical transceivers to 

compute die 
is a key to efficiency

Reach and BW 
density reduces 

switch and re-timer 
power
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Algorithm-Software-Hardware Co-Design

 Combination of algorithms, software, 
and architecture have been and will 
continue to be a critical lever. 

 We can also leverage AI to make the 
entire system more efficient. 
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• Hardware architecture
• Advanced packaging
• New interconnects and memory
• System level integration
• SW optimizations 
• Intelligent design and management
• Algorithm-software-hardware co-design

18

Hardware

Software and Applications

Meeting the Challenge Requires 
Holistic Innovation
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100+ MW 20W

Final Thought
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Copyright and Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. 
While every precaution has been taken in the preparation of this document, it may contain technical 
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise 
correct this information.  Advanced Micro Devices, Inc. makes no representations or warranties with respect 
to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, 
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with 
respect to the operation or use of AMD hardware, software or other products described herein.  No license, 
including implied or arising by estoppel, to any intellectual property rights is granted by this document.  Terms 
and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement 
between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18
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