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A bit of History and requirements

● 2010: initiative to run COSMO on GPUs
○ STELLA: Model specific EDSL library in C++

● 2014: started C++ GridTools
○ Model agnostic
○ Performance portable

● 2015: Started investigating GT4Py
○ A Python rendition of the GridTools concepts to

■ From prototype to deployment
○ Integration with the evergrowing Python ecosystem!

● Requirements
○ Grid agnostic
○ Architecture agnostic
○ Model Agnostic
○ Different users with different responsibilities



A C++ GridTools Example: Nabla4

auto spec = [](auto in, auto out) {
        GT_DECLARE_TMP(double, lap);
        return st::execute_parallel()
            .ij_cached(lap)
            .stage(lap_function(), lap, in)
            .stage(lap_function(), out, lap);
    };

st::run(spec, stencil_backend_t(), grid, in, out);

struct lap_function {
    using out = st::cartesian::inout_accessor<0>;
    using in = st::cartesian::in_accessor<1, st::extent<-1, 1, -1, 1>>;

    using param_list = st::make_param_list<out, in>;

    template <class Eval>
    GT_FUNCTION static void apply(Eval &&eval) {
        eval(out()) = 4.*eval(in())-(eval(in(1, 0))+eval(in(0, 1))+eval(in(-1, 0))+eval(in(0, -1)));
    }
};

● Customized function signatures
○ Happy users?

● Temporaries explicit
○ Playground not easy

● Data dependencies explicit by using symbols
○ I like it



GT4Py Computation Specs

▪ Individual discretized operators
▪ Operators can be composed
▪ Point-wise results are returned

▪ Strong typing makes code safer
▪ Relaxing in the future with generics

▪ Users use the model specific entities
▪ No judgement there…
▪ Same symbol for axis and index/offset

@field_operator

def laplacian(f: Field[[I, J], float]): 

    return -4*f + f(I-1)+f(I+1)+f(J-1)+f(J+1)

@field_operator

def laplap(in_field: Field[[I, J], float]): 
    return laplacian(laplacian(in_field))

laplap

    .with_backend(gpu)

    (in_field, out=out_field[2:-2, 2:-2])

Non-Cartesian co-located grids makes life harder



Icosahedral Grid in ICON

● ICON uses an icosahedral grid
● The implementation does not take 

advantage of the structure
○ The grid treated as unstructured
○ SFC on decomposed pieces

● Computations on location types:
○ Cells
○ Edges
○ Vertices 

■ The final output is here



ICON dynamical core in GT4Py (initial results and portability)



But an Icosahedral is quite well structured…



Nabla4 + Interpolation on ICON Grid

● Nabla4
○ Computation on e0 needs values on c0 and c1
○ Values on c0 needs values  on v0, v1, and v2
○ Values on c1 needs values  on v0, v1, and v3

● Interpolation
○ Reduce on edges
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Baseline equivalent to Fortran

Strided performance improvement

Compressed neighbor 
improvement

Strided vs indirect

K loop blocking on top of all the others

Remap to take into account v2v
Strided never slower



Backend technology

● Using DaCe
○ http://dace.is/fast

● Separation of concerns between
○ Application specialists
○ Performance experts

● Graphic and Programmatic interfaces
○ In IDEs such as vscode
○ Optimization codes are part of the repository

http://dace.is/fast
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● Separation of concerns != isolation

● Beyond AoS and SoA
● Grid API toward the backend needs to 

communicate the regions and the mappings
● The backend needs to manage different 

computations for different regions
● The user code remains the same



Secret Sauce

Data organization

Computation specs Data API

Separation of 
concerns

Performance

Portability Productivity

Separation of 
concerns



Anatomy of an application

Application specific 
concepts/entities

Application code
(high level)

Code performing 
optimizationsCode performing 

optimizationsCode specifying 
optimizations

Backend selection

Developed by the 
model “architect”

Developed by 
scientists and source 

of truth

Developed by 
computer/performance 

experts

Architecture and 
possibly input specific



What are we working on

ICON ACC+Python dynamics

ICON4Py Python model
(with some pre-existing 

components)

PMAP: Python ECMWF 
IFS-FVM

PACE: Python FV3
GFDL/NASA (Old API+DaCe)

GT4Py frontend

GT4Py IR

GT4Py embedded 
execution 

(Just Python)

GT4Py legacy 
code generator

DaCe backend

GT4Py generics

GT4Py containers

GT4Py Physics

Performance 
studies

EXTERNAL

EXTERNAL

USABLE
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