
Embedding Weather and Climate Applications in the
Python Ecosystem: the case of GT4Py

Presenting: Mauro Bianco
Hannes Vogt, Enrique Gonzalez Paredes, Till Ehrengruber, Rico Hauselmann, Linus Groner, Nicoletta
Farabullini, Magdalena Luz, Yilu Chen, Felix Thaler, Christoph Müller, Edoardo Paone, Christos Kotsalos,
Philip Muller, Ioannis Magkanaris, …

A bit of History and requirements

● 2010: initiative to run COSMO on GPUs
○ STELLA: Model specific EDSL library in C++

● 2014: started C++ GridTools
○ Model agnostic
○ Performance portable

● 2015: Started investigating GT4Py
○ A Python rendition of the GridTools concepts to

■ From prototype to deployment
○ Integration with the evergrowing Python ecosystem!

● Requirements
○ Grid agnostic
○ Architecture agnostic
○ Model Agnostic
○ Different users with different responsibilities

A C++ GridTools Example: Nabla4

auto spec = [](auto in, auto out) {
 GT_DECLARE_TMP(double, lap);
 return st::execute_parallel()
 .ij_cached(lap)
 .stage(lap_function(), lap, in)
 .stage(lap_function(), out, lap);
 };

st::run(spec, stencil_backend_t(), grid, in, out);

struct lap_function {
 using out = st::cartesian::inout_accessor<0>;
 using in = st::cartesian::in_accessor<1, st::extent<-1, 1, -1, 1>>;

 using param_list = st::make_param_list<out, in>;

 template <class Eval>
 GT_FUNCTION static void apply(Eval &&eval) {
 eval(out()) = 4.*eval(in())-(eval(in(1, 0))+eval(in(0, 1))+eval(in(-1, 0))+eval(in(0, -1)));
 }
};

● Customized function signatures
○ Happy users?

● Temporaries explicit
○ Playground not easy

● Data dependencies explicit by using symbols
○ I like it

GT4Py Computation Specs

▪ Individual discretized operators
▪ Operators can be composed
▪ Point-wise results are returned

▪ Strong typing makes code safer
▪ Relaxing in the future with generics

▪ Users use the model specific entities
▪ No judgement there…
▪ Same symbol for axis and index/offset

@field_operator

def laplacian(f: Field[[I, J], float]):

 return -4*f + f(I-1)+f(I+1)+f(J-1)+f(J+1)

@field_operator

def laplap(in_field: Field[[I, J], float]):
 return laplacian(laplacian(in_field))

laplap

 .with_backend(gpu)

 (in_field, out=out_field[2:-2, 2:-2])

Non-Cartesian co-located grids makes life harder

Icosahedral Grid in ICON

● ICON uses an icosahedral grid
● The implementation does not take

advantage of the structure
○ The grid treated as unstructured
○ SFC on decomposed pieces

● Computations on location types:
○ Cells
○ Edges
○ Vertices

■ The final output is here

ICON dynamical core in GT4Py (initial results and portability)

But an Icosahedral is quite well structured…

Nabla4 + Interpolation on ICON Grid

● Nabla4
○ Computation on e0 needs values on c0 and c1
○ Values on c0 needs values on v0, v1, and v2
○ Values on c1 needs values on v0, v1, and v3

● Interpolation
○ Reduce on edges

e0
v0 v1

v2

v3

e2e1

e3 e4

c0

c1
v0

e1

e6 e5

e4

e3e2

Baseline equivalent to Fortran

Strided performance improvement

Compressed neighbor
improvement

Strided vs indirect

K loop blocking on top of all the others

Remap to take into account v2v
Strided never slower

Backend technology

● Using DaCe
○ http://dace.is/fast

● Separation of concerns between
○ Application specialists
○ Performance experts

● Graphic and Programmatic interfaces
○ In IDEs such as vscode
○ Optimization codes are part of the repository

http://dace.is/fast

Backend technology

● Using DaCe
○ http://dace.is/fast

● Separation of concerns between
○ Application specialists
○ Performance experts

● Graphic and Programmatic interfaces
○ In IDEs such as vscode
○ Optimization codes are part of the repository

● Separation of concerns != isolation

http://dace.is/fast

● Separation of concerns != isolation

● Beyond AoS and SoA
● Grid API toward the backend needs to

communicate the regions and the mappings
● The backend needs to manage different

computations for different regions
● The user code remains the same

Secret Sauce

Data organization

Computation specs Data API

Separation of
concerns

Performance

Portability Productivity

Separation of
concerns

Anatomy of an application

Application specific
concepts/entities

Application code
(high level)

Code performing
optimizationsCode performing

optimizationsCode specifying
optimizations

Backend selection

Developed by the
model “architect”

Developed by
scientists and source

of truth

Developed by
computer/performance

experts

Architecture and
possibly input specific

What are we working on

ICON ACC+Python dynamics

ICON4Py Python model
(with some pre-existing

components)

PMAP: Python ECMWF
IFS-FVM

PACE: Python FV3
GFDL/NASA (Old API+DaCe)

GT4Py frontend

GT4Py IR

GT4Py embedded
execution

(Just Python)

GT4Py legacy
code generator

DaCe backend

GT4Py generics

GT4Py containers

GT4Py Physics

Performance
studies

EXTERNAL

EXTERNAL

USABLE

Thanks to

