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Design new materials with desired properties and functionalities from 

atomistic structures

Multiple applications:

• refractory high entropy alloys for fusion
• organic molecules with desired optoelectronic properties

• drug design 

• energy innovation (batteries, superconductors, etc.)

• manufacturing

ORNL is the ideal environment to carry out this program due to its
• mission driven research portfolio 

• unique facilities and recognized staff expertise

• access to scientific data

• collaborative environment

Current AI/ML approaches support the applications above, but require 

large amount of domain-specific training data. 

Picture from 
https://www.mpg.de/20096180/artificial-
intelligence-in-material-design 

Picture from 
https://www.printedelectronicsnow.com/c
ontents/view_breaking-news/2018-12-
24/ornl-new-composite-advances-lignin-
as-renewable-3d-printing-material/ 

Driving motivation

https://www.mpg.de/20096180/artificial-intelligence-in-material-design
https://www.mpg.de/20096180/artificial-intelligence-in-material-design
https://www.printedelectronicsnow.com/contents/view_breaking-news/2018-12-24/ornl-new-composite-advances-lignin-as-renewable-3d-printing-material/
https://www.printedelectronicsnow.com/contents/view_breaking-news/2018-12-24/ornl-new-composite-advances-lignin-as-renewable-3d-printing-material/
https://www.printedelectronicsnow.com/contents/view_breaking-news/2018-12-24/ornl-new-composite-advances-lignin-as-renewable-3d-printing-material/
https://www.printedelectronicsnow.com/contents/view_breaking-news/2018-12-24/ornl-new-composite-advances-lignin-as-renewable-3d-printing-material/
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Graph foundation models (GFMs)

In contrast, foundation models (FMs) are trained only once on generic data. 

Once trained, FMs are fine-tuned on a wide variety of downstream tasks, with 
much less task-specific data. 

• Why GFMs ?

– Large Language Models (LLMs), originally developed for text 
applications, do not capture many aspects of materials’ structure

– The atomistic structure maps naturally onto the graph structure of the 
model

– This facilitates developing physics-informed AI/ML methods

– Graph neural networks (GNN) are the backbone of GFM architectures
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The architecture of a GNN consists of:

1. a graph embedding layer

2. hidden graph layers to capture short range interactions between nodes in the graph

3. pooling layers interleaved with graph layers to synthetize information related to adjacent 
nodes via aggregation

4. fully connected (FC) dense layers at the end of the architecture to capture global features of 
the properties of interest

Graph neural networks (GNNs)

Convolutional operations aggregate information from neighboring nodes, thereby 
enabling transferability of local information to larger scales
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HydraGNN: a scalable GNN architecture for 
materials science applications 
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN 

HydraGNN: (i) supports continuing upgraded software; (ii) supports diverse scientific 

applications; and (iii) is portable across heterogeneous computing environments

Multi-task learning 
(MTL) from multiple 

source, heterogeneous, 
imbalanced data

Distributed data 
parallelism  

Efficient scaling

Stabilizes training 
avoids ill-conditioning 

and overfitting 

Ensures transferability

Equivariance for efficient 
data processing and 

computational savings

Predicts simultaneously 
multiple quantities of 

interest

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN
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Pre-training of GFMs using HydraGNN
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Aggregation of large volumes of open-source datasets
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Data cleaning

(eV/angstrom)(eV)

We removed data-samples with L2-norm of the force-tensor above 100 
eV/angstrom
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Data alignment

We re-aligned multi-source multi-fidelity data to transform the energy of 
each atomistic structure during pre-processing by subtracting a linear 
regression term. For each dataset, the linear regression term was calculated 
by solving the following least-squares problem:

= reference energy for the atomistic structure i 

= number of atoms for element number Z for    
   belonging to the atomistic structure i 

= regression coefficients that needs to be computed
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Multi-tasking HydraGNN architecture
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Strong scaling performance

Top: GNN model sizes used for strong scaling tests 

on NERSC-Perlmutter and OLCF-Frontier.
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Weak scaling performance

Top: GNN model sizes used for strong 

scaling and weak scaling tests on 

NERSC-Perlmutter and OLCF-Frontier.

Perlmutter Frontier
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Hyperparameter optimization (HPO)

Challenges: 

• The hyperparameter space is high-dimensional, thus making its exploration 
combinatorically complex

• The GFM training for each HPO trial needs to scale on 128 Frontier nodes to effectively 
process large volumes of data using DDP

→ Need for massive computational resources (and energy)

Proposed approach:

• Progressively ramp-up the scale of HPO with a funneling approach, whereby preliminary 
HPO runs at smaller scale instructing successive  HPO runs at larger scale

• Select GFMs with optimal balance between accuracy vs. energy-savings
• Complete training till convergence is reached only for selected GFMs
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HPO runs with increasing scale up to 8,560 Frontier nodes

Progressive decrease of the 
validation loss function through 
consecutive HPO runs
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‘Omnistat’ for collection of key telemetry from AMD GPUs

Github repository: https://github.com/AMDResearch/omnistat 

Omnistat provides a set of utilities to aggregate scale-out system metrics 

via low-overhead sampling across all hosts in a cluster or, alternatively on 
a subset of hosts associated with a specific user job. 

Relevant target metrics include:
• GPU utilization (occupancy)

• High-bandwidth memory (HBM) usage
• GPU power

• GPU temperature
• GPU clock frequency (Mhz)
• GPU memory clock frequency (Mhz)

• GPU throttling events

https://github.com/AMDResearch/omnistat
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Selection of HPO trials with optimal trade-off between 
accuracy and energy-savings

Tier 1: 
4 GFMs with clear 
advantage in 
accuracy

Tier 2: 
11 GFMs with best 
trade-off between 
accuracy and 
energy savings
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Full training of selected HPO trials

Best HPO trials are trained till 
convergence using checkpoint 
restart strategies to facilitate 
resubmission of job on OLCF-
Frontier.

Early stopping is applied to force 
interruption when validation loss 
function does not significantly 
improve across 10 consecutive 
epochs. 

Training of each GFM took 
approximately 10 wall-clock hours 
using 128 nodes for DDP
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Ensemble learning performance

ANI1-X QM7-X Materials ProjectOC2020 OC2022
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Publication and release of GFM parameters with examples
Publication: 
M. Lupo Pasini, J. Y. Choi, K. Mehta, P. Zhang, D. Rogers, J. Bae, K. Ibrahim, A. Aji, K. W. Schulz, J. Polo, 
and P. Balaprakas. Scalable training of trustworthy and energy-efficient predictive graph foundation 
models for atomistic materials modeling: a case study with HydraGNN.
J Supercomput 81, 618 (2025). https://doi.org/10.1007/s11227-025-07029-9 

Models and pre-processed datasets released on OSTI.GOV:
M. Lupo Pasini, J. Y. Choi, K. Mehta, P. Zhang, D. Rogers, J. Bae, K. Ibrahim, A. Aji, K. W. Schulz, J. Polo, 
and P. Balaprakash (2024). HydraGNN_Predictive_GFM_2024 - Ensemble of predictive graph 
foundation models for ground state atomistic materials modeling. 
https://doi.org/10.13139/OLCF/2474799 

Models with example scripts to load them available on Hugging Face:
https://huggingface.co/mlupopa/HydraGNN_Predictive_GFM_2024 

https://doi.org/10.1007/s11227-025-07029-9
https://doi.org/10.13139/OLCF/2474799
https://huggingface.co/mlupopa/HydraGNN_Predictive_GFM_2024
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On-going and future work
• Integrate DDP, model parallelism (MP)

• Generalize MTL for stable and energy-efficient training

• Develop equivariant generative diffusion models with masking 
techniques

• Apply HydraGNN to modeling evolution of grain structure at 
mesoscopic scale

Mesoscale
Nodes = Voronoi centers
Edges = connection between Voronoi centers

Model Pipeline Parallelism (MPP)

Model Tensor Parallelism (MTP)
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Thank you!
Questions? 

Business Sensitive
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HydraGNN: scalable training with distributed data 
parallelism (DDP)

Distributed Data Store (DDStore) library partitions 
data in chunks and moves it from the PFS to the 
compute memory of each node. This:

• Helps scaling DDP for data that CANNOT be 
stored within the memory of one compute unit

• Avoids frequent communications with the PFS

Traditional form of DDP :

• Move all data onto the memory of one 
compute unit

• Periodically pull data from the parallel file 
system (PFS
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GPU power measurement for models of different size

Top: GNN model sizes used for strong and weak 

scaling tests on NERSC-Perlmutter and

OLCF-Frontier.

Right: GPU Energy use over time for three models 

– SMALL (top), MEDIUM (middle), and LARGE 
(bottom). Each line represents one AMD Instinct 

MI250x.

Time (Hour:Minute)
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Synergy between experimental and computational 
DOE user facilities

Manufacturing Demonstration Facility

Spallation Neutron Source

NERSC Perlmutter

OLCF Frontier

Experimental data 
to train AI models 

Validation of AI 
outcomes with 
experimental 
dataCenter for Nanophase Material Sciences
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Quantities simultaneously predicted:
 
• Property y1

• Property y2

• …

• Property yT

Global Multi-Task Training Loss Function

Multi-Task Learning stabilizes predictions of multiple properties 
Each property operates as a mutual regularizer on the other properties

HydraGNN: multi-task learning

= parameters of the neural network to optimize during training 
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HydraGNN: equivariance

Equivariance is the property that, under Euclidean transformations, maintains consistency 
between the geometric structure and the physical properties associated with it. 
This property is stronger than regular invariance that maintains only geometric properties. 

Equivariance collapses the whole class of structurally and functionally equivalent compounds 
into just one representative.

Implementing equivariance in the message passing layers acts as an inductive bias.  
It eliminates data redundancy and reduces the computational cost to reach the desired 
accuracy. This is expected also to reduce energy consumption. 

Examples of invariant material properties: 
HOMO-LUMO gap, free energy, vibrational spectrum, electronic excitation spectrum

Examples of equivariant material properties:
Electron charge density, atomic forces, magnetic moment
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GPU memory utilization and power measurement

Max GPU HBM memory consumption traces sampled via Omnistat telemetry harness 
during final HPO exercise using 8,560 Frontier nodes (68,480 GCDs) executed on OLCF-
Frontier.
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Ensemble uncertainty quantification

ANI1-X QM7-X Materials ProjectOC2020 OC2022
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Ensemble Uncertainty Quantification

(eV) (eV/Angstrom)
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9. Scalable predictive graph foundation models (GFMs)
Dataset 
(Testing portion)

MAE energy (eV) MAE forces 
(eV/angstrom)

QM7x 31.91 0.23

ANI1x 1.43 0.02

MPTrj 0.39 0.14

OC2020 0.10 0.11

OC2022 0.15 0.08

Uncertainty quantification
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Future Work: Equivariant Generative Diffusion Models with 
Masking Techniques

 

Standard Masking Hybrid Diffusion + Masking

Approach: Perform autoregressive graph masking at each iterative step of the reversed diffusion process 

• Impose equivariance constraints on the diffusion process to eliminate redundancies

• Use global attention mechanisms with GraphGPS to account for long-range interactions

• Use the mask size as a tunable parameter, to find the best compromise between exploration and 

exploitation 
 

Expected outcome:

(a)  efficient exploration of the material space

(b)  the combined effect of equivariance + the robustness and computational efficiency of 

autoregressive 

        graph masking will result in computational and energy savings
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Future Work: Integrate Distributed Data Parallelism (DDP), Model 
Pipeline Parallelism (MPP), and Model Tensor Parallelism (TMP)

Approach: Hierarchically integrate DDP, MPP, and MTP  

• If the data is too large, DDP will be used to partition the data across multiple GPUs. 

• If the data has also broad variability, larger models may be needed to properly capture it. If the 
number of layers in the model is too large to fit in a single GPU, MPP will be used to split different 
layers across separate GPUs. 

• If the number of neurons in each layer makes the model too large to fit in a single GPU, MTP will be 
used to split different neurons across separate GPUs. 

Expected outcome: 

• GNN architecture that simultaneously combines DDP, MPP, and MTP allowing training of 
large, complex GNN models

• Optimized latency and memory overhead and efficient training of GNN models at very 
large scale resulting in energy savings 
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Future Work: Integrate Distributed Data Parallelism, Model 
Pipeline Parallelism, and Model Tensor Parallelism (cont.’d)

Model Pipeline Parallelism (MPP)

Model Tensor Parallelism (MTP)
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Future Work: Generalize MTL for Stable and Energy 
Efficient Data Processing
Approach: Dedicate different heads of the GFM to 
process data from different sources.

• Ensure compatibility between implementation of hard 
parameter sharing and 3D parallelization 

• New hard parameter sharing implementation: 

– uncovers the correlation between the data in the latent 
space,

– sends to the heads only the data that each of them will 
process. 

Expected outcome: Reduced number of parameters 
and unnecessary calculations, leading to: 

(i) reduced computational resources and energy 
consumption; and 

(ii) increased numerical stability and resilience against 
perturbations to the model’s parameters
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