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Driving motivation

Design new materials with desired properties and functionalities from
atomistic structures

Mulhple applications:
refractory high entropy alloys for fusion

« organic molecules with desired optoelectronic properties Picture from

o 1 https://www.printedelectronicsnow.com/c
drug de,SIQr] . . ontents/view breaking-news/2018-12-

« energy innovation (batteries, superconductors, etc.) 24/omnl-new-composite-advances-lignin-

as-renewdable-3d-printing-material/

*  manufacturing

ORNL is the ideal environment to carry out this program due to its
« mission driven research portfolio

« unigue facilities and recognized staff expertise

« qaccess to scientific data

« collaborative environment

Current Al/ML approaches support the applications above, but require

&301001001010190103\' e&,

large amount of domain-specific training data. s

Picture from
https://www.mpg.de/20096180/artificial-
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Graph foundation models (GFMs)

In contrast, foundation models (FMs) are trained only once on generic data.

Once trained, FMs are fine-tuned on a wide variety of downsiream tasks, with
much less task-specific data.

e Why GFMs ?

- Large Language Models (LLMs), originally developed for text
applications, do not capture many aspects of materials’ structure

— The atomistic structure maps naturally onto the graph structure of the
model

— This facilitates developing physics-informed Al/ML methods
— Graph neural networks (GNN) are the backbone of GFM architectures
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Graph neuvural networks (GNNs)

The architecture of a GNN consists of:
1. agraph embedding layer
2. hidden graph layers to capture short range interactions between nodes in the graph

3. pooling layers interleaved with graph layers to synthetize information related to adjacent
nodes via aggregation

4. fully connected (FC) dense layers at the end of the architecture to capture global features of
the properties of interest

e )

INPUT GRAPH =—>» CONV CONV |= = = =« CONV POOLING FC |+ = === FC - OUTPUT

M

TARGET NODE

\ GRAPH CONVOLUTIONAL LAYERS/ %gﬁﬁ'é FULLY CONNECTED LAYERS

LAYER

Convolutional operations aggregate information from neighboring nodes, thereby

%OAKRIDGEenquing transferability of local information to larger scales
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HydraGNN: a scalable GNN architecture for

materials science applications

https://www.osti.gov/doecode/biblio/65891
https://qgithub.com/ORNL/HydraGNN

Multi-task learning
(MTL) from multiple
source, heterogeneous,
imbalanced data

Equivariance for efficient
data processing and
compuvutational savings

\ v / .
HYd raGNN: (i) supports continuing upgraded software; (ii) supports diverse scientific
applications; and (iii) is portable across heterogeneous computing environments )

Predicts simultaneously \ Efficient scalin )
multiple quantities of 9 )
interest

[ Stabilizes training

Distributed data
parallelism

avoids ill- condlhonlng Ensures transferability

and overfitting
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Pre-training of GFMs using HydraGNN
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Aggregation of large volumes of open-source datasets

N)

Open Catalyst 2020 Alloy slabs with 134,929,018
—— ANI1x : .
_ interacting catalysts on
MPTrj the surface
— qm7/Xx Open Catalyst 2022 Alloy slabs with 8,847,031
— 0C2022 interacting catalysts on
—— 0C2020 the surface
Materials Project Bulk metals and alloys 1,580,395
_ Trajectory
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Data cleaning

Dataset Number of data samples removed
ANI1lx [67] 0
QM7-X [68] 0
0C2020 [43] 1
0C2022 [44] 12,270
MPTrj [41] 151
Total 12,421

We removed data-samples with L2-norm of the force-tensor above 100
eV/angstrom
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Data alignment

We re-aligned multi-source mulfi-fidelity data to tfransform the energy of
each atomistic structure during pre-processing by subtracting a linear

regression term. For each dataset, the linear regression term was calculated
by solving the following least-squares problem:

86 = reference energy for the atomistic structure i

Niata 118 9
arg min E (66 _ E CZ'niZ) n’z = number of atoms for element number Z for
Z=1

belonging to the atomistic structure i

(7 =regression coefficients that needs to be computec

e —— ANI1x
80 1 MPTrj
- — qm7Xx = — gm7x
= 415 . . . —— 0C2022 £ 60 . . —— 0C2022
© +3000-2000-1000 O ° -200 0
= 0C2020 —— = 404 0C2020
o 2 4 o
di 20 1
0 0
-800 -600 -400 -200 -3 -2 -1 0 1 2 3
Energy Energy
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Multi-tasking HydraGNN architecture

Important to assess
chemical stability of an
atomistic structure

/ g s - [ Energy }

NN module for graph-level

hared properties
Share
- )
— | Stacked GNN | —» — - ‘f\: _v |
module C h E’ Xi

NN module for node-level

properties
\ 0 y "[ Atomic forces J_

Important to assess
dynamical stability of an
atomistic structure

Input atomistic structure
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[ ]
Strong scaling performance O
S
= a
2 0
5 8
Model size SMALL | MEDIUM LARGE £ 3
Type of MPNN layer EGNN EGNN EGNN © £ .
7 MPNN layers 3 6 6 a- 21077 —e— smALL
# neurons in MPNN layers 50 500 2,000 2 —4— MEDIUM
# FC layers 2 2 3 —- LARGE
# neurons in FC layers 50 1,000 1,000 56 s X 5o ST0 0
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GPU counts
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Top: GNN model sizes used for strong scaling tests 0
on NERSC-Perimutter and OLCF-Frontier. <
8
— Q
2 2107
S U
-
. =
£ —8— SMALL
& —4— MEDIUM
—B— LARGE
1014
% OAK RIDGE 29 510 211 212 213 214
12

National Laboratory G P U coun t 5




Weak scaling performance

Model size SMALL | MEDIUM LARGE | Top: GNN model sizes used for strong
Type of MPNN layer EGNN EGNN EGNN | scaling and weak scaling tests on

7+ MPNN layers 3 0 6 | NERSC-Perimutter and OLCF-Frontier.
# neurons in MPNN layers 50 500 2,000

# FC layers 2 2 3

# neurons in FC layers 50 1,000 1,000

Number of parameters 58,404 | 14,539,004 | 163,129,004

1.2
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Perimutter Frontier
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Hyperparameter optimization (HPO)

Challenges:

« The hyperparameter space is high-dimensional, thus making its exploration
combinatorically complex

« The GFM fraining for each HPO trial needs to scale on 128 Frontier nodes to effectively
process large volumes of data using DDP

- Need for massive computational resources (and energy)

Proposed approach:

« Progressively ramp-up the scale of HPO with a funneling approach, whereby preliminary
HPO runs at smaller scale instructing successive HPO runs at larger scale

« Select GFMs with optimal balance between accuracy vs. energy-savings
« Complete training fill convergence is reached only for selected GFMs

v %Q{XK RIDGE
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HPO runs with increasing scale up to 8,560 Frontier nodes

First HPO run with 2,048 Frontier nodes _ Second HPO run with 3,072 Fm:tie" nodes
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Progressive decrease of the

validation loss function through
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‘Omnistat’ for collection of key telemetry from AMD GPUs

Github repository: https://aithub.com/AMDResearch/omnistat

Omnistat provides a set of utilities o aggregate scale-out system metrics
via low-overhead sampling across all hosts in a cluster or, alternatively on
a subset of hosts associated with a specific user job.

Relevant target metrics include:

« GPU utilization (occupancy)

« High-bandwidth memory (HBM) usage
« GPU power

« GPU temperature

 GPU clock frequency (Mhz)

« GPU memory clock frequency (Mhz)

« GPU throttling events

V) %OAK RIDGE
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https://github.com/AMDResearch/omnistat

Selection of HPO trials with optimal trade-off between

accuracy and energy-savings

Tier 1:

4 GFMs with clear
advantage in
accuracy

Tier 2:

11 GFMs with best
trade-off between
accuracy and
energy savings

- %OAK RIDGE
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Energy vs. Validation MAE

«  HPO trial

HPO trial selected - tier 2
Lees * HPO trial selected - tier 1
e « —— Pareto Front

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 —0.4 -0.3
logio (Validation MAE)



Full fraining of selected HPO trials

Best HPO frials are trained fill
convergence using checkpoint
restart strategies to facilitate
resubmission of jolbb on OLCF-
Fronfier.

Early stopping is applied to force
iInferruption when validation loss
function does not significantly
Improve across 10 consecutive
epochs.

Training of each GFM took
approximately 10 wall-clock hours
using 128 nodes for DDP
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Ensemble learning performance
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Publication and release of GFM parameters with examples

Publication:

M. Lupo Pasini, J. Y. Choi, K. Mehtq, P. Zhang, D. Rogers, J. Bae, K. lbrahim, A. Aji, K. W. Schulz, J. Polo,
and P. Balaprakas. Scalable training of trustworthy and energy-efficient predictive graph foundation
models for afomistic materials modeling: a case study with HydraGNN.

J Supercomput 81, 618 (2025). https://doi.org/10.1007/s11227-025-07029-9

Models and pre-processed datasets released on OSTIL.GOV:

M. Lupo Pasini, J. Y. Choi, K. Mehtq, P. Zhang, D. Rogers, J. Bae, K. lbrahim, A. Aji, K. W. Schulz, J. Polo,
and P. Balaprakash (2024). HydraGNN_Predictive_GFM_2024 - Ensemble of predictive graph
foundation models for ground state atomistic materials modeling.
hitps://doi.org/10.13139/OLCF/2474799

Models with example scripts to load them available on Hugging Face:
https://huggingface.co/mlupopa/HydraGNN_Predictive. GEFM_2024

a Hugging Face Q. Search models, datasets, users...

O ST I G O\/ U.S. Department of Energy
. Office of Scientific and Technical Information

HydraGNN_Predictive_GFM_2024 - Ensemble of predictive graph foundation % mlupopa/HydraGNN_Predictive_GFM_2024 T ©like 0

models for ground state atomistic materials modeling

-

English & License: bsd-3-clause-clear

eeeeeeeeeeeeeeeee

DOI: https://doi.org/10.13139/OLCF/2474799 - OSTIID: 2474799
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On-going and future work

« |Integrate DDP, model parallelism (MP)

BRANCHING

ENCODER

. A usssssssssssas,

« Generalize MTL for stable and energy-efficient training

: DECODER

LATENT FOR DATA SOURCE 2

« Develop equivariant generative diffusion models with masking 5 : _
techniques . SPACE Lo

---------------
o

BRANCHING

«  Apply HydraGNN to modeling evolution of grain structure at SouREs
mesoscopic scale

: DECODER
: FOR DATA SOURCE 3

...............

Mesoscale
Nodes = Voronoi centers
Edges = connection between Voronoi centers

Model Replica 1 Model Replica N Z'j"/«‘ Z’/
\ W/ -\ : .. : D\ 4
‘\\ N : ’f N M - . - i
\\ {5 1 [ \l iy ’
\ ap "‘, \‘w r ) -

Distributed Data Parallelism (DDP)

.

f
1
1
1
I
I
1
1
1
1
1
I
I
1
\

.
H H
H H

i ——— -

- == == == Model Pipeline Parallelism (MPP)
% OAK RIDGE - == == == Model Tensor Parallelism (MTP)
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HydraGNN: scalable training with distributed data
parallelism (DDP)
Distributed Data Store (DDStore) library partitions

Traditional form of DDP data in chunks and moves it from the PFS to the

compute memory of each node. This:
 Move all data onto the memory of one

compute unit + Helps scaling DDP for data that CANNOT be
o . stored within the memory of one compute unit
» Periodically pull data from the parallel file - Avoids frequent communications with the PFS

system (PFS

Compute Nodes

U|[GPU

]D LIt

/

One-side R

Parallel ----7- - - --___ __ _ _____ i K. SO
File Syste Index lookup breload

I iﬂﬂﬂﬂiﬂﬂﬂﬂﬂi

(b) Containerized File Format c) Distributed Data Store




GPU power measurement for models of different size

GPU Average Power (W)

Model size SMALL MEDIUM LARGE | 1401 —— Socket 0
Type of MPNN layer EGNN EGNN EGNN — 2§§E§§§
# MPNN layers 3 6 6 | 120- —— Socket 3
# neurons in MPNN layers 50 500 2,000
# FC layers 2 2 3 | 1004
# neurons in FC layers 50 1,000 1,000 L;E
Number of parameters 58,404 | 14,539,004 | 163,129,004 17-45
Top: GNN model sizes used for strong and weak 2001 O,.uww o ——
scaling tests on NERSC-Perimutter and 1so | . socket 1
O I_C F—FI’O nﬂel’. 200 - —— Socket 3
150 -
100 - !
15:50 15:55 16:00 16:05 16:10

—— Socket 0
Socket 1
—— Socket 2

400 1

Right: GPU Energy use over time for three models

— SMALL (top), MEDIUM (middle), and LARGE 3007 ek N L b [T —— Socket 3
(bottom). Each line represents one AMD Instinct 2004
MI250x. 100 4

19:00 19:30 20:00 20:30 21:00

W XQAKRIDGE Time (Hour:Minute)




Synergy between experimental and computational
DOE user facilities

NERSC Perimutter

Manvufacturing Demonsircmon Facility

Experimental data
to train Al models

OLCF Frontier
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Validation of Al
outcomes with

experimental
data
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HydraGNN: multi-task learning

Multi-Task Learning stabilizes predictions of multiple properties
Each property operates as a mutual regularizer on the other properties

Quantities simultaneously predicted: HydraGNN architecture

Fully Connected Layer

* Property vy,

* Property y,

Graph input ——p —_— | — Fully Connected Layer — Y5

CONVOLUTIONAL LAYER

BATCH NORMALIZATION LAYER

* Property y;

Fully Connected Layer —_— yT

. 4

W = parameters of the neural network to optimize during training

argmin||ypredict,1 (W) — y1/3)+ |y predict,2 (W) — y2ll3+ - . . +{[¥predice,r (W) — y |13

Wy J
1

Global Multi-Task Training Loss Function
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HydraGNN: equivariance

Equivariance is the property that, under Euclidean transformations, maintains consistency
between the geometric structure and the physical properties associated with it.
This property is stronger than regular invariance that maintains only geometric properties.

Equivariance collapses the whole class of structurally and functionally equivalent compounds
INto just one representative.

Implementing equivariance in the message passing layers acts as an inductive bias.
It eliminates data redundancy and reduces the computational cost to reach the desired
accuracy. This is expected also to reduce energy consumption.

Examples of invariant material properties:
HOMO-LUMO gap, free energy, vibrational spectrum, electronic excitation spectrum

Examples of equivariant material properties:
Electron charge density, atomic forces, magnetic moment

o8 %Q{U{ RIDGE
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GPU memory utilization and power measurement

=
o
o

(o]
o
1

(o))
o
1

B
o

Max GPU Memory Use (%)
N
o

o
1

Max GPU HBM memory consumption traces sampled via Omnistat felemetry harness
during final HPO exercise using 8,560 Frontier nodes (68,480 GCDs) executed on OLCF-
Frontier.
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Ensemble unceriainty quantification
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Ensemble Uncertainty Quantification

energy forces
—— ANI1x-v3
0.15- ﬂ 0.4 2 ~ == MPTrj-v3
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QM7 31.91 0.23
ANITX 1.43 0.02
MPTr 0.39 0.14
OC2020 0.10 0.11
OC2022 0.15 0.08
Uncertainty quantification
o =
.g 0.15 o ! | MPTrj-v2
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9. Scalable predictive graph foundation models (GFMs)
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Future Work: Equivariant Generative Diffusion Models with
Masking Techniques

Approach: Perform autoregressive graph masking at each iterative step of the reversed diffusion process

« Impose equivariance constraints on the diffusion process to eliminate redundancies

« Use global attention mechanisms with GraphGPS to account for long-range interactions

« Use the mask size as a tunable parameter, to find the best compromise between exploration and
exploitation

Standard Masking Hybrid Diffusion + Masking

Original structure INPUT to the GNN OUTPUT predicted by the GNN Original structure INPUT to the GNN OUTPUT predicted by the GNN

a9 £ L ¢/ Masked
s TS "/ portion
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structure

structure
Expected outcome:

(a) efficient exploration of the material space
(b) the combined effect of equivariance + the robustness and computational efficiency of

autoregressive
graph masking will result in computational and energy savings
%OAK RIDGE

National Laboratory

Unmasked nodes and edges are
subject to perturbation via diffusion




Future Work: Integrate Distributed Data Parallelism (DDP), Model
Pipeline Parallelism (MPP), and Model Tensor Parallelism (TMP)

Approach: Hierarchically integrate DDP, MPP, and MTP
o |f the datais too large, DDP will be used to partition the data across multiple GPUs.

e |f the data has also broad variability, larger models may be needed to properly capture it. If the
number of layers in the model is too large to fit in a single GPU, MPP will be used to split different
layers across separate GPUs.

e |f the number of neurons in each layer makes the model too large to fit in a single GPU, MTP will be
used to split different neurons across separate GPUs.

Expected outcome:

« GNN architecture that simultaneously combines DDP, MPP, and MTP allowing training of
large, complex GNN models

o Optimized latency and memory overhead and efficient training of GNN models at very
large scale resulting in energy savings
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Future Work: Integrate Distributed Data Parallelism, Model
Pipeline Parallelism, and Model Tensor Parallelism (cont.'d)

Distributed Data Parallelism (DDP)

Model Replica 1 Model Replica N

’___-_-_---K
’_____-__-__-5

———————— Model Pipeline Parallelism (MPP)
———————— Model Tensor Parallelism (MTP)




Future Work: Generalize MTL for Stable and Energy

Efficient Data Processing

Approach: Dedicate different heads of the GFM to
process data from different sources.

« Ensure compatibility between implementation of hard
parameter sharing and 3D parallelization

« New hard parameter sharing implementation:

— uncovers the correlation between the data in the latent
space,

— sends to the heads only the data that each of them will
process.

Expected outcome: Reduced number of parameters
and unnecessary calculations, leading to:

(i) reduced computational resources and energy
consumption; and

(ii) increased numerical stability and resilience against
perturbations to the model’s parameters
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