%OAK RIDGE

National Laboratory

S4PST: Stewardship of
Programming Systems and
Tools

Keita Teranishi, Pedro Valero-Lara, and
William Godoy

S0S27 Workshop, 19th March, 2025

/""""% U.S. DEPARTMENT OF

ORNL IS MANAGED BY UT-BATTELLE LLC
‘*\'// EN ERGY FOR THE US DEPARTMENT OF ENERGY

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Next-Generation Scientific Software Technologies program, under
contract number DE-AC05-000R22725.

%OAK RIDGE

National Laboratory

Scientific Computing Software Development During Exascale
Computing Project (ECP) and Post-ECP Era

US DOE Exascale Computing Project (2016-2023)
* Software Technology Project:
* Development of 70 software products
* Annual budget of S70M.
* Programming Systems:
* Developed over 10 programming system products.
e Supercomputing Infrastructure
e All DOE supercomputing systems employ accelerator technology.
Post-ECP Initiative
End of 2022: Software Sustainability Proposal Call
* Issued by the US DOE Advanced Scientific Computing Research (ASCR)
April 2023: Phase 1 — Incubation
* 6 projects initiated
Fall 2023: the Next Generation Scientific Software Technology (NGSST)
* Four existing projects and one new project were recommended for funding

January 2024: Phase 2 Commencement
* Annual funding of $11.5M allocated through 2028.
%OAK RIDGE

National Laboratory

7 (6+1) Software Stewardship Organizations

NGSST is the next step after the successful DOE Exascale Computing Project (2016-
2023) as we evolved into “Heterogeneous and Al dominated landscape”

Toward a Post-ECP
Software
Sustainability
Organization (PESO)

Michael

Heroux
(SNL)

%OAK RIDGE

National Laboratory

Collaboration for
Better Software
(COLABS)

Open Scientific
Software
Foundation (CORSA)

Greg

Watson
(ORNL)

Center for Sustaining
Workflows and
Application Services

Rafael
Ferreira

Da Silva
(ORNL)

p

Stewardship for
Programming
Systems and

Tools (S4PST)

Keita
Teranishi

(ORNL)

~

Sustainable Tools OASIS (SciDAC
Ecosystem Project FastMath and
(STEP) RAPIDS-2)

Consortium for the Advancement of Scientific Software (CASS)

CASS and its member organizations work with our
software product teams to improve the quality,
sustainability, and interoperability of the software products
in our ecosystem

The CASS software catalog covers a range of freely
available libraries supporting leading-edge computational
science and engineering research on high-performance
computers. Most products available via Spack in the E4S
distribution.

Engage with us:

 Learn about the impacts of CASS software

« Join our announcement mailing list

 Participate in our working groups

« Reach out to a member organization responsible for specific areas
of the software ecosystem of interest

» Become a CASS member. We welcome projects and organizations
with similar scientific software stewardship missions

OAK RIDGE Current CASS members: CORSA, FASTMath,
National Laboratory PESQ, RAPIDS, S4PST, STEP, COLABS, SWAS

%

Software Catalog
@ Areas

Number of products in parentheses

Data and visualization (10)

Provide capabilities for analyzing,
visualizing, compressing, moving,
and managing data

Development tools (6)

Help address performance
challenges and faciliate efficient
support of the latest HPC node
architectures

Mathematical libraries (14)

Scalable libraries supporting the
latest HPC architectures for
coupled systems, ensemble
calculations, and more

Programming models and
runtimes (11)

Support intra-node and inter-node
concurrency on current and next-
generation HPC node architectures

Software ecosystem and delivery

(2)

Provide software build, test, and
integration tools, and containers
environments

Current funding: DOE/ASCR
NGSST and SciDAC programs

o
PESO). .
.t_// https://pesoproject.org

Scientific software

ecosystem benefits
(technical and community)

</>
el 10,000+
0~ . :
W3 Community members via
ecosystem collaborations
M 1,000+
o b5
N Code teams share ecosystem
costs and benefits

100+

Speedup using advanced
devices like GPUs

@ Reduction in build times via
Spack build caches

1

Source code base for all
computing systems

https://cass.community

https://cass.community/
https://cass.community/software/
https://spack.io/
https://e4s.io/
https://cass.community/about/
https://cass.community/about/
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://www.scidac.gov/
https://cass.community/impacts/
http://eepurl.com/iRiSnY
https://cass.community/working-groups/
https://cass.community/about/
https://cass.community/about/

Why do we care about programming systems?

From Hidden Figures, 2016.

“FORTRAN is a new and exciting language
used by programmers to communicate
with computers. It is exciting as it is the

wave of the future.” -- Octavia Spencer as
Dorothy Vaughan, Langley Research Center, NASA in 1961.

Today, we continue to use programming systems as a
critical tool to communicate with computers and shape

the future.

Courtesy: Damian Rouson at LBL and
Kengo Nakajima at RIKEN/U of Tokyo.

%OAK RIDGE

National Laboratory

Why do we care about programming systems?

* Programming Systems are the first point of contact in human-computer interactions
« The DOE HPC programming environment is notoriously challenging:

« Key Facilities: OLCF, ALCF, NERSC

« Historical Challenges in Programming:

e 80s: Vectorization is complex (Cray), SMP programming is significantly challenging (Cray YMP)
* 90s: SIMD programming is intricate (CM-2/CM-5), SPMD is hard to debug (PVM and MPI)
* 00s: Mulitcore Programming (hybrid of MPI + X) remains difficult

* 10s: GPU Programming adds more complexities (discrete memory spaces, massive SIMD, etc.)
* 20s: Domain specific accelerators, Dataflow Architecture? (Sambanova, Cerebras, etc.)

» Scientific discovery, software development, and hardware technology never cease to evolve

UNIX I YR E AMPI OpenMP i & . Sverieat

f @,@ , =
m @ S @ é‘rps'e oo IR @11 Julla 38 wworon _@

®glt ITi?:l\lurﬂnF"pr Qe HGltLI:bOkkos_ﬂl _ E‘Encm ﬂ
K o . s
Vector /SMPS / SIMD, Internet / Multiocore, / Cloud, GPUs Al/ML
Computers Micro- MPPs GPUs
1980 | essors 1990 2000 2010 2023

%OAKRIDGE =)
National Laboratory

Observations during ECP

Adapting to Heterogeneous Computing Norms Totalaplcatincodes: 2
— NVIDIA, AMD and Intel GPUs

 Julia (1.6%)
Enhancing Productivity Through Performance Portability

mm C(1.6%)
Python/C++ = Fortran (9.7%)
e C++ (69.4%)

mm C/C++ (1.6%)

. Python/C++ (6.5%)

— Same source code across different platforms Fortran/C++ m—Fortran/C++ (8.1%)
e Evolving Programming Systems g cot

— C++ has become dominant language for ECP apps &

— High productivity Languages, Al/ML Fortran
Legacy Applications

Courtesy: Evans TM, Siegel A, Draeger EW, et al.

A survey of software implementations used by

application codes in the Exascale Computing
Project. IIHPCA. 2022;36(1):5-12

— Many Fortran applications are still actively used in other DOE
programs.

Julia
mm Python
Pythen/C++
C++
ClIC++
e Fortran/C++
e Fortran/Python/C++

14 1 50 -

i
L=
i

Fortran/Pythan
Fortran
C

% OAK RIDGE £ @"‘é ;;»‘” TSI, jéﬁf ef &£F

National Laboratory

Number of codes
[==]
(¥7)
(=]
i

Number of codes

o~
]
(=1

2016 2017 2018 2019 2020 2021

Observations during ECP (Continued)

HPC Vendor Shift

e Transitioning from traditional HPC to Al/ML-focused systems.

Cloud HPC Growth

* (Cloud-based solutions are overtaking on-premises HPC.

DOE's Custom Solutions

e Features compilers, runtime, APls, and testing suites with fast support.

e Committed to standardizing C++, Fortran, OpenMP/ACC, MPI to meet DOE's
specific needs.

e Aims to establish a unique position within the broader open-source software
community.

Strategic Solution
e Embrace a community-wide, proactive approach to new technology integration.

%QA RIDGE

tional Laboratory

What is S4PST?

e Objective: Enhance Programming Systems for next-generation high-
performance computing (HPC) systems and ensure their seamless
integration with emerging Al technologies for scientific advancement.

e Scope: Focus on Performance Portable Parallel Programming Frameworks,

Compilers, Distributed Computing Framework, and High Productivity
Languages.

e Challenges:

— Technical: Requires unique skill sets, including comprehensive knowledge of full-stack technologies,
system architecture, and application needs.

— Diversified Portfolio: Commitment to serving existing users and computing systems while embracing

new technologies, meeting evolving application demands, and fostering the next generation of HPC
experts.

— People: Dedicated engagement is essential for the development of individual products, support of
users, and mentoring of emerging talents (future HPC experts and leaders).

%OAK RIDGE

National Laboratory

S4PST Community,

* PI: Keita Teranishi (ORNL)
» CoPI: William Godoy and Pedro Valero

Lara Ke;t.a eranishi Pedro Valero- Willam Godoy Christian Trott DamienLebrun- Brice Videau ~ Damian Rouson
(ORNL) Lara (ORNL) (ORNL) (SNL) Grandie (ORNL) (ANL, ALCF) (LBL)
- 7 National Laboratories: A
- Oak Ridge National Laboratory y q
 Argonne National Laboratory % - [m\
* Lawrence Livermore National Laboratory Johannes Doerfert ~ Sunita | Johannes Blascf;ke Pat McCormick Alex Aiken (SLAC) Paul Hargrove Katherine

« Sandia National Laboratories
» Los Alamos National Laboratory
« SLAC National Accelerator Laboratory

» University Partners:
 University of Delaware
« Massachusetts Institute of Technology

» Collaborations:
» Louisiana State University

Thomas Naughton ~ Suzanne Parete- ~ Swaroop Michel Schanen Hui Zhou (ANL) Rajeev Thakur
(ORNL) Koon (ORNL) Pophale (ORNL) (ANL) (ANL)

- ==

v\

 Pacific Northwest National Laboratory Ignacio Seyong Lee Thomas Ken Raffenetti Yanfei Guo Siva Rabab
) . . Laguna (LLNL) (ORNL) Applencourt (ANL) (ANL) Rajamanickam Alomairy (MIT)
» Carnegie Mellon University _ i (ANLALCF) (SNL)

» University of Tennessee, Knoxville
« Stanford University

Other 6 NSSGT projects . o
%OAK RIDGE Alan Edelman Jan Hiickelheim Giorgis

National Laboratory (MIT) (ANL) Georgakoudis
(LLNL)

%

S4PST: Our portfolio for DOE’s Scientific Mission

OAK RIDGE

National Laboratory

Product Stewardship
OpenMP/OpenACC
LLVM
Fortran
Kokkos
MPICH
Open MPI
Legion
GASNet-EX/UPC++
HIP
SYCL

Emerging Technologies
Automatic Differentiation (AD)

HPC+AI ecosystems: Julia,
Mojo, Python

Large language models for
HPC

Kokkos ecosystems adapting
Al-hardware/special arithmetic
units

S4PST Activities

e Advancement of Programming Systems

. Development for new node architectures and interconnects
Adapting new architecture features

. Incorporating Al technology and emerging programming systems

° Software Maintenance

e Addressing bugs
. Providing version updates
. Integrating multiple programming systems as PESO and E4S

e Standardization

. Fortran: Emphasizing DO CONCURRENT, Fortran 2023
. MPI: Including MPICH and OpenMPI with version of MPI-4.2 and 5.0

* OpenMP/OpenACC: Advancing OpenMP 6.0 OpenAcc

Directives for Accelerators

OpenMP

%OAK RIDGE

National Laboratory

S4PST Activities (Continued)

* Vendor Independent Test Suites
* OpenMP and OpenACC
* Incubation

Validation

* Automatic Differentiation (Enzyme)
*High Productivity Language (Julia)
* Adapting Al/ML techniques

* Community Engagement

* Documentation

e Tutorials, Hackathons, Webinars

* Example Programs

* HPC Representative (LLVM)

* Tutorials (SC, ISC, HPC-ASIA, DOE-MEXT)
e Synergistic Efforts with other SSOs and HPSF

+ Website — HIGH PERFORMANCE
* https://sapst.org] SOFTWARE FOUNDATION

%OAK RIDGE

National Laboratory

1

https://ornl.github.io/events/s4pst2023/

S4PST Highlight

A‘R‘
w Home About ~ Community Newsletter
/‘)
<

hpc
creates. SAPST

S4PST.org Stewardship for
S4PST was involved in: Programming

Systems and Tools

Funded by the U.S. Department of Energy (DOE) Office of
Advanced Scientific Computing Research (ASCR) Next Generation

® 4 P U b | I C atl O n S of Scientific Software Technologies program, and part of the

Consortium for the Advancement of Scientific Software (CASS)

e 4 Tutorials

* 1 Invited Presentation
* 1 Research Poster

O BoF Events

« Several Booth Talks

Latest News

SC24 Special Newsletter Summer Newsletter

%OAK RIDGE

National Laboratory

Software Release:

S4PST - Highlights

24

e Kokkos 4.5, Ekokkos
e OpenMPI5.0.2, MPICH 4.3 APl

e OpenMP 5.2 and 6.0 Verification Suites QpenMP
e OpenACC 3.3 Verification Suites OpenACC
e ChipStarv1.1 (HIP on Aurora)
e Julial.l .l'—II

e JACC (Julia for Accelerators) UaCC

nnnnnnnnnnnnnnnnnnnn

Technical Accomplishments:
e Kokkos-3 won IEEE TPDC Best Paper Award

e Legion runs on 8,000 nodes of Frontier
e ComPile LLVM-IR Al model released
e 5+ |JHPCA Journal paper submissions

Collaborations

OpenACC Specification Committee

OpeMP Specification Committee

Enzyme team and several universities under NSF
project

SciDAC Next Generation Power Grid Analysis

%OAK RIDGE

National Laboratory

Outreach:

e S4PST Presentation in Japan (HPC-AI Council)

e Kokkos User Group Meeting at SNL, NM.

* Kokkos Developers Meeting at ORNL

e Kokkos Presentation and Tutorial in Japan

* LBL hosted Fortran Standards Committee Meeting in Berkeley
* ANL hosted IWOCL24 in Chicago

e MPICH and OpenMPI teams collaborate Forum for Abstract
Binary Interface standardization

e SIAM PP24: OpenMP, LLVM, Kokkos, Fortran, Julia
* SC24 BoFs, Tutorials,

* SIAM CSE25: Julia, CASS, etc.

International Collaboration:

e DOE-MEXT (Japan) on Fortran and Kokkos
o Kokkos (DOE team) - CEA Collaboration
 ADAC: The Accelerated Data Analytics and Computing Institute

Lawrence
Livermore
National
Laboratory

ya NIVERSITY o8 S —
. L?sAlamos SL., lﬂ)m\.\ww I|I||

NATIONAL LABORATORY

5

Thank you!

OAK RIDGE

National Laboratory

S4PST Product Introduction (Extra Materials)

¥ OAK RIDGE
National Laboratory

18

OpenMP and OpenACC (UD, ORNL and ANL)

More Science, Less Programming

Project Overview
e Standardization, Lead: Sunita Chandrasekaran
implementation’ prefix test scripts with run- [ci skip] U Of Delaware & BNL

@ Passed Administrator created pipeline for commit 879fef2b [20 hours ago, finished 20 hours ago

validation, benchmarking, ==

€O 20 jobs (Y 16 minutes 0 seconds, queued for 2 seconds
CO d e m ig ratio n Pipeline Jobs 20 Tests 0
(} A u to m ate te St ge ne ratio N Groupjobsby | Stage | Job dependencies
. #pragma acc kernels
and explore its n : : ; :

'
@ LLYM-Project-Sync @ Setup-Repos-Gilgamesh @ LLVM-Build-Gilgamesh-AMD-MI210 @ HECBENCH-Gilgamesh-AMD-MI210 #F‘T'ﬂgﬂ'lﬂ el lLNJ'P]ndl_'i‘ﬂ_"l‘ldi.']‘lt

L T

0 = o =

#pragma acc data copyin{ a[0n], b[0:n]), copvout(c[(tn])
1

a pp Ii Ca b iI ity for Ot he r @ Setup-Repos-Hopperl ® LLVM-Build-Gilgamesh-NVIDIA-H100 @ HECBENCH-Gilgamesh-NVIDIA-H100 } F“Lfi:i : :E;]i';:r:ﬁli:.*.*] I
@ setup-Repos-Odyssey @ LLVM-Build-Hopperl-NVIDIA-GH200 & HECBENCH-Hopper1-NVIDIA-GH200 P I
m O d e IS S u C h a S SYC L’ © LLvM-Build-Odyssey-AMD-MI300A @ HECBENCH-Odyssey-AMD-MI300A * }
CUDA and Kokkos N J
Synergistic Activities
e C/C++ Fortran

void sasxpy_device({float a, float x[], float y[], int size)
{

1
4
1
4 fpragma omp target map{to: a,size x[@:sizel)
Compilation |[——=| Execution 5 mapf{tafrom: y[@:size]d

o {
7 int i;

Execution .

Data L #pragma omp parallel for

for (L = B; i <« size; L++)

LLMJ 10 y[i] = a = x[i] + y[il:
11
300 4 I T !
136

s \Pass 12}
215 218 213 226

200 L | | 100 -
100 1 1
27
0 L Lo Lo

o a]
22,7 239 245 15.0 16.0 17.0 15.0 16.0 17.0 19.0

Frontier AMD Frontier Cray Frontier LLVM
403 409 i] 295

84 329 1gp

® Close coordination with
the LLVM and MLIR
community along with
E4S and SPACK

- 100

Compilat
Data

b2

A | A L A (] a 1]
543 56.0 6.0.0 15.0 16.0 17.0 15.0 16.0 17.0 19.0
Perlmutter NVIDIA Perlmutter Cray Perlmutter LLVM i
4 4 182 396

400 A

Fail

<
&

Pass C/C++ tests (out of 477)
w
Pass Fortran tests (out of 265)
b .

An Overview of Agent-

%OAK RIDGE Evolution of OpenMP Compilers based Approach for LLMJ

National Laboratory

Lead:
Johannes Doerfert

LLVM in S4PST (LLNL, ANL, LBNL, ORNL)

Project Overview
* Base compiler for all HPC vendors; vehicle for DOE to collaborate with

OpenMP HIP CUDA

academia and industry, innovate and productize compiler and toolchain O
The LLVM Kernel Info pass
tech nology that produces a report for
* Focus on DOE application issues, esp. wrt. Perlmutter, Frontier, Aurora, o offload/GPU code. Known
d El Capi problematic code patterns
an apitan L are explicitly listed with their

source location. Profile

» Offload for LLVM/Flang and native C++ parallelism; collaborations with ; : :
information (PGO) is
integrated for FLOP

AMD and others o
Accomplishments ap wipp g . caloulatons.
* Creating of LLVM/Offload; portability across devices and interoperability
between programming languages; backed by AMD, Apple, Codeplay, Intel,

LLVM passes

‘ kernel- ‘
- info -

offload report

Serial UMT Avg. Cycle Wall Time (s)

0.161

HPE, and others 0.16
* Improvement of Alias analysis of LLVM/Flang (+ performance) o 0126 1
« Analysis tool of LLVM-IR to detect potential performance bugs in program 02 o

source 232 0.060 0.060 0.059
e MLin LLVM; ComPile dataset created; foundation models and GPU ggi I I

specific tuning strategies will follow; collaboration with Google and others

& & L FF s ¥
OAK RIDGE R R U
%National Laboratory e S v &

Vg N

Kokkos Core — Maintaining Performance Portability
Kokkos Al — MLIR and future Al application support

Product Description: Lead: Christian Trott (SNL)

Pure C++ library targeting CUDA, HIP, SYCL, OpenMP and others
Used by applications and libraries to write single source parallel code for Kokkos-Al Lead:
heterogeneous architectures Siva Rajamanickam

Used at more than 150 institutions by hundreds of projects SNL

Accomplishments

Development of Kokkos Dialect in LLVM MLIR

Kokkos 4.5 Release. (Full SYCL Support) k (o) k k OS

Synergistic Efforts

HPSF Cl Working group and support efforts could be contributed to, and
leveraged for Kokkos Core

Collaboration with CEA, France
Collaboration with RIKEN, Japan

%OAK RIDGE

National Laboratory

Modern Fortran (LBNL)

« The next standard will include

Project Overview

There are ™15 actively * Asynchronous task-based Lead: Damian Rouson, LBNL
developed or maintained parallelism
COmpilerSZ . . I outline the objects in the Binary image
o GNU - Type-safe generic programming 5o taroct data sapioimage) map(iron:edge nask)
° n_ r : S0mp parallel do
pen-source ’ for better error messages do il
LFortran, LLVM, ... edge_rask(i, j) = .false.
i* Ejfmz?efl 1] qi ?]-Ehﬁn or, &
« Vendors: Arm, AMD, « DOE funds support LLVM Flang and e RPN Rl
HPE (Cray), IBM, Intel, launched LFortran endif (@MYCmage(i-liisl, J-1ijeD) == 0)) edgenask(i, §) = .true.
ndif
NAG, NVIDIA, ... enddo
! ! ?gggﬁ end target

O Ideal do concurrent O omp parallel 'Soe end targer datal o concurrent facilitates
: | : : : | optimizations, including automatic
GPU-offloading

« Fortran 2023 was published
in November:

* Runtime-agnostic
parallelism for shared or
distributed memory

100.00

integer, allocatable :: dimage(:,:)
legical, allocatable :: edge_maski:,:)

! Allocate image and edge mask
allocate (image{m, n), source = 0, stat = allocstat, errmsg = allocmsg)
allocate (edge_mask(n, n), source = .false., stat = allocstat, errmsg = allocmsg)

Average Speedup (5 runs)

« Concurrent iterations 10.00 ; | Initialize image
. . ! outl h [i he bhimar i Mg
supporting automatic :m“ﬁ;n.”]‘r‘,ir.; BT o, Tagedts) /= 0)
. -:1: | Ir_ ::|1':“1-..
GPU-offloading e 1 or. § == n) the
1.00 T T T T T T I II'I {any(imageli-1:1+1, j-1:7+1) 03) edge_mask{i, §) CEEUE,
1 2 4 8 16 32 64 128 _ 00

%OAK RIDGE OMP_NUM_THREADS

National Laboratory

Open MPI (ORNL)and MPICH (ANL)

OpenMPI Lead: Thomas

Project Overview Nau(;g;\thin]
- Full support of DOE’s Supercomputing
Systems
- GPU, Resource Management, Batch Systems MPICH Leaflil:anfei Guo

- GPU support and performance tuning
- MPI ABI standardization

- MPI Standard (Forum) activities

Inter-NUMA Bandwidth on Sunspot

Synergistic efforts

e PETSc (external work to optimize support for
GPU communication)

Bandwidth (
S
o
o

* OpenPMIx: Implements PMIx interface for 0
resource managers/process launch R AR R S R A
/\
* Support/Engagements/Use: SLURM, OpenPBS, Flux, AR ARNCFAS
OpenSHMEM, DEEP-SEA project, etc. Message Size

%OAK RIDGE ——MPICH4.2 =——Topology-aware MPICH

National Laboratory

UPC++ & GASNet-EX (LBNL)upL - -

Description and Capabilities Lead: Paul H. Hargrove (LBL)
- GASNet-EX provides communication middleware for Global Address Space
sgalqble Partitioned Global Address Space (PGAS) and ‘ Shared |§] Shared |1| Shared l§] Shared
distributed asynchronous many-task (AMT) programming Segment | Segment | Segment | Segment
systems
- Remote Memory Access (RMA) and Active Messages Private : Private : Private : Private
AM Segment Segment Segment Segment
(AM) i i]
. il n il
 Direct RMA to./from accele rato-r memory (e..g. GPUs) e s g —peery
« UPC++ provides high-level productivity abstractions over
GASNet-EX through modern C++ features to enable PGAS Scientific Applications and Frameworks
programming and Remote Procedure Call (RPC) M metatiiphter | ExaGraph [JNWChemEx
Synerg|stic Effo rts Chapel Legion uPC UPC++ {::::::5 Devastator || ..
e Legion (including within S4PST)

« Flang (external work to implement parallel Fortran [Atomics | GASNet-EX

features)
Memory Technologies Network Hardware
(Host memory, GPUs, ...) (HPE Slingshaot, InfiniBand, Cray Aries, Ethernet, Omni-Path, ...)
%OAK RIDGE EI cn‘g';;?gmd Other interacting

National Laboratory BERKELEY LAB projects components

%

Legion (LANL,SLAC)

Distributed, asynchronous task parallel
programming framework

Support for CPUs & GPUs

Used in production on Frontier,
Perlmutter, and Summit

Applications and libraries developed
under ECP, supported under S4PST:

S3D (SNL)

FlexFlow (CMU/LANL/Stanford/UCSD)
SpiniFEL (SLAC)

New work: support cuNumeric on non-NVIDIA
machines

Synergistic Efforts

Legion is core technology for NVIDIA’s
Legate and cuNumeric products
GASNet-EX for low latency
communication (including within
S4PST)

P

2
OAK RIDGE . LosAlamos B~ -Y
National Laboratory MATIOMAL LAECRATORY Al s W
ST 1040

S3D Scalability on Frontier

Visualized output from S3D

Co-Leads: Pat McCormick (LANL)
and Alex Aiken (SLAC)

S3D Task Graph
cuNumeric
- FlexFlow SpniFEL Legate
Legion
GASNet-EX

Legion Software in S4PST’s scope

SYCL (ALCF, OLCF, NERSC)

Performance Portable Programming

Systems based on Modern C++

e Successor of OpenCL (Open Standard) and Support CPUs, GPUs
and FPGAs
Leverage LLVM compiler toolchain

e Two major Open-Source implementations: Intel’s DPC++ and

AdaptiveCpp

Synergistic efforts

e HIP (HIP is a backend of SYCL)

o Kokkos (Kokkos have a SYCL backend)

e LLVM (LLVM is the infrastructure used by all SYCL
implementations)

%OAK RIDGE

National Laboratory

Lead: Thomas Applencourt, ALCF

. (" Cher stabie OpenlL |

MO Mentatons

*” HIP (ALCF, NERSC, OLCF)

Heterogeneous-Computing Interface for Portability .
Lead: Brice Videau, ALCF
Project Goals: HIP is AMD's Portable GPU programming model

Very similar to CUDA >
« Single source C++ language, with C runtime library Argﬁﬂﬂfmﬁ %giﬁlﬁiggﬁ’
» Large ecosystem of math/support libraries
* DOE implementation in collaboration with Intel: chipStar
« LLVM + SPIR-V + Level-Zero/OpenCL
» Intel math libraries

Accomplishments: Geo rgia I\
* Provide HIP support on LLVM 16 to 19: chipStar v1.2 TCC h |_.;
» Supported Applications CP2K, GAMESS, libCEED, OpenMM |
° Supported libraries: hlpBLAS, hlpSOLVER, hlpRTC, hIpFFT, hIpRAND o SYCL vs. HIP Run Time Comparison (SYCL/HIP)
* Upcoming support for: rocPRIM, rocThrust, CuPy, and more T
* Pre-release CUDA support %1,0."000.oooo0000000000000000000....
£ cee,
Z; el
Synergistic Efforts o LU LU LI LT
« LLVM (base tool-chain of AMD HIP and chipStar) ‘;ég‘ggg‘—:g‘gé2§:§2§if§§52‘§;‘§§i2§§§§‘22‘2‘;
* SYCL (also a Khronos standard like SPIR-V and OpenCL) T8 fidalg B ocRcssiigg 5iiE R iR
% OAK RIDGE - o
National Laboratory

%OAK RIDGE

National Laboratory

Automatic Differentiation (Enzyme)

Goals

e Facilitate integration of scientific simulations into Al models

Strategy

e This requires a workflow for generating the gradient of scientific simulations using
techniques such as automatic differentiation and differentiable programming

e Focus on LLVM-based AD tool Enzyme as LLVM is the backend for most vendor architectures

e “Scalable automatic differentiation of multiple parallel paradigms through compiler

augmentation”, SC22, Best Student Paper

e C/C++, Julia, Rust, OpenMP, Fortran, RAJA, CUDA, ROCm, MPI

Tasks and Objectives

e Differentiable Linear Solvers

o Differentiable GPU Kernels

e Demonstrate integration into an Al framework

e Written guidance and challenges for applying Enzyme
e language support (e.g., C/C++, Julia, ...)
e Numerical challenges (e.g., iterative algorithms)
e Architecture support

Synergies
e LLVM project
e Julia programming language

e SciDAC Next Generation Grid Simulation

Argonne ’ III'-
%OAK RIDGE HATIONAL LABORATORY II

National Laboratory

ILLINOIS

UNIVERSITY OF ILLEINQIS AT LIRBANA-CHAMPAIGN

Team:

A. Edelman, MIT

J. Hueckelheim, ANL
W. Moses, UIUC

M. Schanen, ANL

Optimize Optimize

B A
S,
jUIi..a Lower M I%,]\’/l CodeGen

Unrolling
DG (ROCm) o &
5.4x
Unrollin MallocCoalescing PreOptimization
DG (CUDA) ot S 2 > r
17.8x 116.6x 1378.3%
Allocator Recompute InlineCacheABI
LBM c ; |
6.4x 8.7x 19.87x
SpecPHI PreOptimization
LULESH &
2.0x 24x 2079.1x
CagheLICM Inlining PreOpt
RSBench !
4.7x% 9.5 6372.2%
smplating PHI LoopBoun PreOptimization
XSBench O >
3.2x 9.5% 16.3x 25.9x
Forward (1x) 10x 100x 1000x OOM

Memory Overhead of Enzyme

. dE(t)/ on(1) 150
-~ J H DARE?TH
e 3 . TEXAS

100 .@ Los Alamos

NATIONAL LABORATORY

~150
100 125

Global Climate Model impIemezrsmted V\;Eth En;yme (in Julia)

https://github.com/EnzymeAD
https://enzyme.mit.edu/conference

https://github.com/EnzymeAD
https://enzyme.mit.edu/conference

JUIla MIT, ORNL ACC

« High-level, high-performance, high-productivity JULIA FOR ACCELERATORS
programming language ? Unidinensional arrays .
funetion sy (s, alone, .) Lead: Alan Edelman, MIT
« Built on top of LLVM compiler toolchain fomction dot(i. x. 3

return x[i] = y[i]
end
SIZE = 1_000_000
x = round.(rand(Float64, SIZE) * 100)
Tasks in CY24: y = round.(rand(Float64, SIZE) * 100)
alpha = 2.5
dx = JACC.Array(x)

« Support AMD MI300 and NVIDIA H200 GPUs Ince. paratlel for(SIZE, axpy, alohs, dx. &)

res = JACC.parallel_reduce(SIZE, dot, dx, dy)

Multidimensional arrays

« Address startup-latency issues for accelerated function axpy (i, 3. alphs, x, ¥ o goo
i)) enx[l.]] = x[i,j] + alpha = y[i,j] ‘lulla
computing with Julia umction dot(t, 1. %,) l
return x[i,j] * y[i,j] +
. . end
« Continuous development of Julia for HPC (LLVM 17+, SIE 1 s o
new archltectu res) ilzh;o:ni:érand(noacsm SIZE, SIZE) * 100) "'"ﬂ- AST

dy = JACC.Array(y)

dx = JACC.Array(x) -------1 XPU back endJ

JACC.parallel _for ((SIZE,SIZE),axpy,alpha,dx,dy)
res = JACC.parallel_reduce ((SIZE,SIZE),dot,dx,dy)

Synergistic Efforts: ﬁ“ y

« Enable Automatic Differentiation (AD) for HPC codes S /

« Support MPI 4.x in MPL.jl / MPI-ABI standardization _ v

Threads || CUDA || AMDGPU || OneAPI Others H H :a

eReeee "
Ll

nte! CPU GPU
¥ OAK RIDGE oru || "Gpy || GU || epu || Ofhers

National Laboratory

« Development of LLMs fine-tuned for HPC

« Framework to offer users to develop their

%OAK RIDGE

LLMs for HPC Programming (ORNL)

Software Development

own LLM

Pre-Fine-Tuned Models

e Julia,Kokkos,OpenMP,BLAS,High Order
Explicit PDE

& root@lap125354: ~ X + ~

ChatHPC. prompt("general”, "What is Julia?")
Julia is a high-level, high-performance, dynamic programming language for numeric
al computing. It provides a sophisticated compiler, distributed parallel executio
n, numerical accuracy, and an extensive mathematical function library. Julia is o
ften used for data analysis and computational science.
ChatHPC. prompt("threads", "Give a code that computes the multiplication of
a Matrix A with a vector X and stores the result in a vector Y")

Here is the Julia code that performs the multiplication of a matrix A with a vect
or X and stores the result in a vector Y.

M Yjulia
Threads.@threads for j = l:size(A, 2)
for i = 1:size(A, 1)
Y[i] = Y[i] + A[i,3] * X[j]
end
end

National Laboratory

> ChatHPC
[
Modes
General Code Automatic Code
Production Parallelization Translation
LLMs
Output .
Code Production Threads
Input . CUDA
gt D Automatic and SIIIIIIIIIIIiizn
Agnostic and ransparent Prompt AMDGPU
portable prompt Tuning I:::::::::::::::::
“Give a Julia function that I OneAPI :
computes a multiplication of a ';;;;;;;;;;;;;;;;:
matrix m by a vector v and return JACC '

the solution in a vector s”

Automatic
Parallelization

Sequential Julia
Code

function axpy(N, alpha, x, y)
foriin 1:N
x[i] += alpha * y[i]
end
end

Automatic and
Transparent
Prompt Tuning

Code Translation

Automatic and
Transparent
Prompt Tuning

@ ™

Lead: Pedro Valero-Lar, ORNL

Ckokkos RAJV
Programming [C
Models

OpenMP AFMPI

LLM
Agents < Fromge] - >ChatHPC

julia @ g BSD

Libraries

MAGMA oo

- Synergy with DOE SciDAC RAPIDS-2 and DOE ASCR Al for Science (Durban and Ellora Projects)

	Slide 1: S4PST: Stewardship of Programming Systems and Tools
	Slide 2: Acknowledgement
	Slide 3: Scientific Computing Software Development During Exascale Computing Project (ECP) and Post-ECP Era
	Slide 4: 7 (6+1) Software Stewardship Organizations
	Slide 5: Consortium for the Advancement of Scientific Software (CASS)
	Slide 6: Why do we care about programming systems?
	Slide 7: Why do we care about programming systems?
	Slide 8: Observations during ECP
	Slide 9: Observations during ECP (Continued)
	Slide 10: What is S4PST?
	Slide 11: S4PST Community
	Slide 12: S4PST: Our portfolio for DOE’s Scientific Mission
	Slide 13: S4PST Activities
	Slide 14: S4PST Activities (Continued)
	Slide 15: S4PST Highlight
	Slide 16: S4PST – Highlights
	Slide 17
	Slide 18: S4PST Product Introduction (Extra Materials)
	Slide 19: OpenMP and OpenACC (UD, ORNL and ANL)
	Slide 20: LLVM in S4PST (LLNL, ANL, LBNL, ORNL)
	Slide 21: Kokkos Core – Maintaining Performance Portability Kokkos AI – MLIR and future AI application support
	Slide 22: Modern Fortran (LBNL)
	Slide 23: Open MPI (ORNL)and MPICH (ANL)
	Slide 24: UPC++ & GASNet-EX (LBNL)
	Slide 25: Legion (LANL,SLAC)
	Slide 26: SYCL (ALCF, OLCF, NERSC)
	Slide 27: HIP (ALCF, NERSC, OLCF)
	Slide 28: Incubation
	Slide 29: Automatic Differentiation (Enzyme)
	Slide 30
	Slide 31: LLMs for HPC Programming (ORNL)

