
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

S4PST: Stewardship of
Programming Systems and
Tools

Keit a Te ranishi, Pedro Valero-Lara, and
Wil l iam Godoy

SOS27 Workshop, 19th March, 2025

2

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Next-Generation Scientific Software Technologies program, under
contract number DE-AC05-00OR22725.

3

Scientific Computing Software Development During Exascale
Computing Project (ECP) and Post-ECP Era
US DOE Exascale Computing Project (2016-2023)

• Software Technology Project:

• Development of 70 software products

• Annual budget of $70M.

• Programming Systems:

• Developed over 10 programming system products.

• Supercomputing Infrastructure

• All DOE supercomputing systems employ accelerator technology.

Post-ECP Initiative

• End of 2022: Software Sustainability Proposal Call

• Issued by the US DOE Advanced Scientific Computing Research (ASCR)

• April 2023: Phase 1 – Incubation

• 6 projects initiated

• Fall 2023: the Next Generation Scientific Software Technology (NGSST)

• Four existing projects and one new project were recommended for funding

• January 2024: Phase 2 Commencement

• Annual funding of $11.5M allocated through 2028.

4

7 (6+1) Software Stewardship Organizations

NGSST is the next step after the successful DOE Exascale Computing Project (2016-
2023) as we evolved into “Heterogeneous and AI dominated landscape”

Toward a Post-ECP
Software

Sustainability
Organization (PESO)​

Michael
Heroux
(SNL)

Collaboration for
Better Software

(COLABS)​

Anshu
Dubey
(ANL)

Open Scientific
Software

Foundation (CORSA)​

Greg
Watson
(ORNL)

Center for Sustaining
Workflows and

Application Services​

Rafael
Ferreira
Da Silva​
(ORNL)

Stewardship for
Programming
Systems and

Tools ​(S4PST)​

Keita
Teranishi

(ORNL)

Sustainable Tools
Ecosystem Project

(STEP)

Terry
Jones

(ORNL)

OASIS (SciDAC
FastMath and

RAPIDS-2)

Rob
Ross
(ANL)

5

Consortium for the Advancement of Scientific Software (CASS)

Software Catalog

https://pesoproject.org

Scientific software
ecosystem benefits
(technical and community)

100,000+
Lines of code replaced with

high-quality libraries and tools

10,000+
Community members via

ecosystem collaborations

1,000+
Code teams share ecosystem

costs and benefits

100+
Speedup using advanced

devices like GPUs

10+
Reduction in build times via

Spack build caches

1
Source code base for all

computing systems

CASS and its member organizations work with our
software product teams to improve the quality,
sustainability, and interoperability of the software products
in our ecosystem

https://cass.community

The CASS software catalog covers a range of freely
available libraries supporting leading-edge computational
science and engineering research on high-performance
computers. Most products available via Spack in the E4S
distribution.

Current CASS members: CORSA, FASTMath,
PESO, RAPIDS, S4PST, STEP, COLABS, SWAS

Current funding: DOE/ASCR
NGSST and SciDAC programs

Engage with us:
• Learn about the impacts of CASS software
• Join our announcement mailing list
• Participate in our working groups
• Reach out to a member organization responsible for specific areas

of the software ecosystem of interest
• Become a CASS member. We welcome projects and organizations

with similar scientific software stewardship missions

https://cass.community/
https://cass.community/software/
https://spack.io/
https://e4s.io/
https://cass.community/about/
https://cass.community/about/
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://www.scidac.gov/
https://cass.community/impacts/
http://eepurl.com/iRiSnY
https://cass.community/working-groups/
https://cass.community/about/
https://cass.community/about/

6

Why do we care about programming systems?

From Hidden Figures, 2016.

“FORTRAN is a new and exciting language
used by programmers to communicate
with computers. It is exciting as it is the
wave of the future.” -- Octavia Spencer as
Dorothy Vaughan, Langley Research Center, NASA in 1961.

Today, we continue to use programming systems as a
critical tool to communicate with computers and shape
the future.

Courtesy: Damian Rouson at LBL and
Kengo Nakajima at RIKEN/U of Tokyo.

7

Why do we care about programming systems?
• Programming Systems are the first point of contact in human-computer interactions

• The DOE HPC programming environment is notoriously challenging:

• Key Facilities: OLCF, ALCF, NERSC

• Historical Challenges in Programming:
• 80s: Vectorization is complex (Cray), SMP programming is significantly challenging (Cray YMP)

• 90s: SIMD programming is intricate (CM-2/CM-5), SPMD is hard to debug (PVM and MPI)

• 00s: Mulitcore Programming (hybrid of MPI + X) remains difficult

• 10s: GPU Programming adds more complexities (discrete memory spaces, massive SIMD, etc.)

• 20s: Domain specific accelerators, Dataflow Architecture? (Sambanova, Cerebras, etc.)

• Scientific discovery, software development, and hardware technology never cease to evolve

ECP

1980 1990 2000 2010 2023

AI/MLCloud, GPUs SIMD, Internet
MPPs

Vector
Computers

SMPs

Micro-
processors

Multiocore,
GPUs

8

• Adapting to Heterogeneous Computing Norms

– NVIDIA, AMD and Intel GPUs

• Enhancing Productivity Through Performance Portability

– Same source code across different platforms

• Evolving Programming Systems

– C++ has become dominant language for ECP apps

– High productivity Languages, AI/ML

• Legacy Applications

– Many Fortran applications are still actively used in other DOE
programs.

Courtesy: Evans TM, Siegel A, Draeger EW, et al.
A survey of software implementations used by
application codes in the Exascale Computing
Project. IJHPCA. 2022;36(1):5-12

Observations during ECP

9

Observations during ECP (Continued)

HPC Vendor Shift
• Transitioning from traditional HPC to AI/ML-focused systems.
Cloud HPC Growth
• Cloud-based solutions are overtaking on-premises HPC.
DOE's Custom Solutions
• Features compilers, runtime, APIs, and testing suites with fast support.
• Committed to standardizing C++, Fortran, OpenMP/ACC, MPI to meet DOE's

specific needs.
• Aims to establish a unique position within the broader open-source software

community.
Strategic Solution
• Embrace a community-wide, proactive approach to new technology integration.

10

What is S4PST?

• Objective: Enhance Programming Systems for next-generation high-
performance computing (HPC) systems and ensure their seamless
integration with emerging AI technologies for scientific advancement.

• Scope: Focus on Performance Portable Parallel Programming Frameworks,
Compilers, Distributed Computing Framework, and High Productivity
Languages.

• Challenges:
– Technical: Requires unique skill sets, including comprehensive knowledge of full-stack technologies,

system architecture, and application needs.

– Diversified Portfolio: Commitment to serving existing users and computing systems while embracing
new technologies, meeting evolving application demands, and fostering the next generation of HPC
experts.

– People: Dedicated engagement is essential for the development of individual products, support of
users, and mentoring of emerging talents (future HPC experts and leaders).

11

S4PST Community
• PI: Keita Teranishi (ORNL)

• CoPI: William Godoy and Pedro Valero
Lara

• 7 National Laboratories:
• Oak Ridge National Laboratory

• Argonne National Laboratory

• Lawrence Livermore National Laboratory
• Lawrence Berkeley National Laboratory

• Sandia National Laboratories

• Los Alamos National Laboratory

• SLAC National Accelerator Laboratory

• University Partners:
• University of Delaware

• Massachusetts Institute of Technology

• Collaborations:
• Louisiana State University

• Pacific Northwest National Laboratory
• Carnegie Mellon University

• University of Tennessee, Knoxville

• Stanford University

• Other 6 NSSGT projects

Future

HPC

Expert

Keita Teranishi
(ORNL)

Pedro Valero-
Lara (ORNL)

William Godoy
(ORNL)

Christian Trott
(SNL)

Damien Lebrun-
Grandie (ORNL)

Brice Videau
(ANL, ALCF)

Damian Rouson
(LBL)

Johannes Doerfert
(LLNL)

Sunita
Chandrasekaran
(UD,BNL)

Johannes Blaschke
(LBL,NERSC)

Pat McCormick
(LANL)

Alex Aiken (SLAC) Paul Hargrove
(LBL)

Katherine
Rasmussen (LBL)

Joel Denny
(ORNL)

Thomas Naughton
(ORNL)

Suzanne Parete-
Koon (ORNL)

Swaroop
Pophale (ORNL)

Michel Schanen
(ANL)

Hui Zhou (ANL) Rajeev Thakur
(ANL)

Ignacio
Laguna (LLNL)

Seyong Lee
(ORNL)

Thomas
Applencourt
(ANL,ALCF)

Ken Raffenetti
(ANL)

Yanfei Guo
(ANL)

Siva
Rajamanickam
(SNL)

Rabab
Alomairy (MIT)

Alan Edelman
(MIT)

Jan Hückelheim
(ANL)

Giorgis
Georgakoudis
(LLNL)

12

S4PST: Our portfolio for DOE’s Scientific Mission

Product Stewardship

• OpenMP/OpenACC

• LLVM

• Fortran

• Kokkos

• MPICH

• Open MPI

• Legion

• GASNet-EX/UPC++

• HIP

• SYCL

Emerging Technologies

• Automatic Differentiation (AD)

• HPC+AI ecosystems: Julia,
Mojo, Python

• Large language models for
HPC

• Kokkos ecosystems adapting

AI-hardware/special arithmetic

units

13

S4PST Activities

• Advancement of Programming Systems
• Development for new node architectures and interconnects

• Adapting new architecture features

• Incorporating AI technology and emerging programming systems

• Software Maintenance
• Addressing bugs

• Providing version updates

• Integrating multiple programming systems as PESO and E4S

• Standardization
• Fortran: Emphasizing DO CONCURRENT, Fortran 2023

• MPI: Including MPICH and OpenMPI with version of MPI-4.2 and 5.0

• OpenMP/OpenACC: Advancing OpenMP 6.0

14

S4PST Activities (Continued)

• Vendor Independent Test Suites

•OpenMP and OpenACC

• Incubation

•Automatic Differentiation (Enzyme)

•High Productivity Language (Julia)

•Adapting AI/ML techniques

• Community Engagement

•Documentation

•Tutorials, Hackathons, Webinars

•Example Programs

•HPC Representative (LLVM)

•Tutorials (SC, ISC, HPC-ASIA, DOE-MEXT)

• Synergistic Efforts with other SSOs and HPSF

• Website

• https://s4pst.org

https://ornl.github.io/events/s4pst2023/

15

S4PST Highlight

S4PST.org

S4PST was involved in:

• 4 Tutorials

• 4 Publications

• 1 Invited Presentation

• 1 Research Poster

• 9 BoF Events

• Several Booth Talks

16

S4PST – Highlights
Software Release:
• Kokkos 4.5,
• OpenMPI 5.0.2, MPICH 4.3
• OpenMP 5.2 and 6.0 Verification Suites
• OpenACC 3.3 Verification Suites
• ChipStar v1.1 (HIP on Aurora)
• Julia 1.1
• JACC (Julia for Accelerators)

Outreach:
• S4PST Presentation in Japan (HPC-AI Council)

• Kokkos User Group Meeting at SNL, NM.

• Kokkos Developers Meeting at ORNL

• Kokkos Presentation and Tutorial in Japan

• LBL hosted Fortran Standards Committee Meeting in Berkeley

• ANL hosted IWOCL24 in Chicago

• MPICH and OpenMPI teams collaborate Forum for Abstract
Binary Interface standardization

• SIAM PP24: OpenMP, LLVM, Kokkos, Fortran, Julia

• SC24 BoFs, Tutorials,

• SIAM CSE25: Julia, CASS, etc.Collaborations
• OpenACC Specification Committee
• OpeMP Specification Committee
• Enzyme team and several universities under NSF

project
• SciDAC Next Generation Power Grid Analysis

Technical Accomplishments:
• Kokkos-3 won IEEE TPDC Best Paper Award
• Legion runs on 8,000 nodes of Frontier
• ComPile LLVM-IR AI model released
• 5+ IJHPCA Journal paper submissions

International Collaboration:
• DOE-MEXT (Japan) on Fortran and Kokkos
• Kokkos (DOE team) - CEA Collaboration
• ADAC: The Accelerated Data Analytics and Computing Institute

17

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Thank you!

1818

S4PST Product Introduction (Extra Materials)

19

OpenMP and OpenACC (UD, ORNL and ANL)

Project Overview
● Standardization,

implementation,
validation, benchmarking,
code migration

● Automate test generation
and explore its
applicability for other
models such as SYCL,
CUDA and Kokkos

Synergistic Activities

● Close coordination with
the LLVM and MLIR
community along with
E4S and SPACK

Lead: Sunita Chandrasekaran
U of Delaware & BNL

Evolution of OpenMP Compilers
An Overview of Agent-

based Approach for LLMJ

20

LLVM in S4PST (LLNL, ANL, LBNL, ORNL)
Project Overview

• Base compiler for all HPC vendors; vehicle for DOE to collaborate with
academia and industry, innovate and productize compiler and toolchain
technology

• Focus on DOE application issues, esp. wrt. Perlmutter, Frontier, Aurora,
and El Capitan

• Offload for LLVM/Flang and native C++ parallelism; collaborations with
AMD and others

Accomplishments
• Creating of LLVM/Offload; portability across devices and interoperability

between programming languages; backed by AMD, Apple, Codeplay, Intel,
HPE, and others

• Improvement of Alias analysis of LLVM/Flang (+ performance)

• Analysis tool of LLVM-IR to detect potential performance bugs in program
source

• ML in LLVM; ComPile dataset created; foundation models and GPU
specific tuning strategies will follow; collaboration with Google and others

Lead:
Johannes Doerfert
LLNL

The LLVM Kernel Info pass

that produces a report for

offload/GPU code. Known

problematic code patterns

are explicitly listed with their

source location. Profile

information (PGO) is

integrated for FLOP

calculations.

21

Kokkos Core – Maintaining Performance Portability
Kokkos AI – MLIR and future AI application support

Product Description:
• Pure C++ library targeting CUDA, HIP, SYCL, OpenMP and others

• Used by applications and libraries to write single source parallel code for
heterogeneous architectures

• Used at more than 150 institutions by hundreds of projects

Accomplishments

• Development of Kokkos Dialect in LLVM MLIR

• Kokkos 4.5 Release. (Full SYCL Support)

Synergistic Efforts
• HPSF CI Working group and support efforts could be contributed to, and

leveraged for Kokkos Core

• Collaboration with CEA, France

• Collaboration with RIKEN, Japan

Lead: Christian Trott (SNL)

Kokkos-AI Lead:
Siva Rajamanickam
SNL

22

Modern Fortran (LBNL)

Project Overview
• There are ~15 actively

developed or maintained
compilers:

• Open-source: GNU,
LFortran, LLVM, ...

• Vendors: Arm, AMD,
HPE (Cray), IBM, Intel,
NAG, NVIDIA, ...

• Fortran 2023 was published
in November:

• Runtime-agnostic
parallelism for shared or
distributed memory

• Concurrent iterations
supporting automatic
GPU-offloading

Lead: Damian Rouson, LBNL

do concurrent facilitates
optimizations, including automatic
GPU-offloading

• The next standard will include

• Asynchronous task-based
parallelism

• Type-safe generic programming
for better error messages

• DOE funds support LLVM Flang and
launched LFortran

23

Open MPI (ORNL)and MPICH (ANL)
OpenMPI Lead: Thomas

Naughton III
ORNL

MPICH Lead: Yanfei Guo
 ANL

0

2000

4000

6000

8000

10000

12000

B
a

n
d

w
id

th
(M

B
/s

)
Message Size

Inter-NUMA Bandwidth on Sunspot

MPICH 4.2 Topology-aware MPICH

Project Overview
• Full support of DOE’s Supercomputing

Systems
• GPU, Resource Management, Batch Systems

• GPU support and performance tuning
• MPI ABI standardization
• MPI Standard (Forum) activities

Synergistic efforts

• PETSc (external work to optimize support for
GPU communication)

• OpenPMIx: Implements PMIx interface for
resource managers/process launch

• Support/Engagements/Use: SLURM, OpenPBS, Flux,
OpenSHMEM, DEEP-SEA project, etc.

24

UPC++ & GASNet-EX (LBNL)

Lead: Paul H. Hargrove (LBL)Description and Capabilities
• GASNet-EX provides communication middleware for

scalable Partitioned Global Address Space (PGAS) and
distributed asynchronous many-task (AMT) programming
systems

• Remote Memory Access (RMA) and Active Messages
(AM)

• Direct RMA to/from accelerator memory (e.g. GPUs)
• UPC++ provides high-level productivity abstractions over

GASNet-EX through modern C++ features to enable PGAS
programming and Remote Procedure Call (RPC)

Synergistic Efforts
• Legion (including within S4PST)
• Flang (external work to implement parallel Fortran

features)

Global Address Space

25

Legion (LANL,SLAC)

Co-Leads: Pat McCormick (LANL)
and Alex Aiken (SLAC)

Distributed, asynchronous task parallel
programming framework
• Support for CPUs & GPUs
• Used in production on Frontier,

Perlmutter, and Summit

Applications and libraries developed
under ECP, supported under S4PST:
• S3D (SNL)
• FlexFlow (CMU/LANL/Stanford/UCSD)
• SpiniFEL (SLAC)
• New work: support cuNumeric on non-NVIDIA

machines

Synergistic Efforts
• Legion is core technology for NVIDIA’s

Legate and cuNumeric products
• GASNet-EX for low latency

communication (including within
S4PST)

S3D Task Graph

Legion

GASNet-EX

FlexFlowS3d SpniFEL Legate

cuNumeric

Legion Software in S4PST’s scope

Visualized output from S3D

S3D Scalability on Frontier

26

SYCL (ALCF, OLCF, NERSC)

Lead: Thomas Applencourt, ALCF
Performance Portable Programming
Systems based on Modern C++

● Successor of OpenCL (Open Standard) and Support CPUs, GPUs
and FPGAs

● Leverage LLVM compiler toolchain
● Two major Open-Source implementations: Intel’s DPC++ and

AdaptiveCpp

Synergistic efforts
● HIP (HIP is a backend of SYCL)
● Kokkos (Kokkos have a SYCL backend)
● LLVM (LLVM is the infrastructure used by all SYCL

implementations)

27

HIP (ALCF, NERSC, OLCF)
27

Heterogeneous-Computing Interface for Portability

Project Goals: HIP is AMD's Portable GPU programming model
• Very similar to CUDA
• Single source C++ language, with C runtime library
• Large ecosystem of math/support libraries
• DOE implementation in collaboration with Intel: chipStar

• LLVM + SPIR-V + Level-Zero/OpenCL
• Intel math libraries

Accomplishments:
• Provide HIP support on LLVM 16 to 19: chipStar v1.2
• Supported Applications CP2K, GAMESS, libCEED, OpenMM

• Supported libraries: hipBLAS, hipSOLVER, hipRTC, hipFFT, hipRAND
• Upcoming support for: rocPRIM, rocThrust, CuPy, and more

• Pre-release CUDA support

Synergistic Efforts
• LLVM (base tool-chain of AMD HIP and chipStar)
• SYCL (also a Khronos standard like SPIR-V and OpenCL)

Lead: Brice Videau, ALCF

2828

Incubation

29

Automatic Differentiation (Enzyme)

https://github.com/EnzymeAD
https://enzyme.mit.edu/conference

Memory Overhead of Enzyme

Team:
A. Edelman, MIT
J. Hueckelheim, ANL
W. Moses, UIUC
M. Schanen, ANL

Global Climate Model implemented with Enzyme (in Julia)

Goals

• Facilitate integration of scientific simulations into AI models

Strategy

• This requires a workflow for generating the gradient of scientific simulations using
techniques such as automatic differentiation and differentiable programming

• Focus on LLVM-based AD tool Enzyme as LLVM is the backend for most vendor architectures

• “Scalable automatic differentiation of multiple parallel paradigms through compiler
augmentation”, SC22, Best Student Paper

• C/C++, Julia, Rust, OpenMP, Fortran, RAJA, CUDA, ROCm, MPI

Tasks and Objectives

• Differentiable Linear Solvers

• Differentiable GPU Kernels

• Demonstrate integration into an AI framework

• Written guidance and challenges for applying Enzyme
• Language support (e.g., C/C++, Julia, …)

• Numerical challenges (e.g., iterative algorithms)

• Architecture support

Synergies

• LLVM project

• Julia programming language

• SciDAC Next Generation Grid Simulation

https://github.com/EnzymeAD
https://enzyme.mit.edu/conference

30

Lead: Alan Edelman, MIT

MIT, ORNL

• High-level, high-performance, high-productivity
programming language

• Built on top of LLVM compiler toolchain

Tasks in CY24:

• Support AMD MI300 and NVIDIA H200 GPUs

• Address startup-latency issues for accelerated
computing with Julia

• Continuous development of Julia for HPC (LLVM 17+,
new architectures)

Synergistic Efforts:

• Enable Automatic Differentiation (AD) for HPC codes

• Support MPI 4.x in MPI.jl / MPI-ABI standardization

31

LLMs for HPC Programming (ORNL)

• Development of LLMs fine-tuned for HPC
Software Development

• Framework to offer users to develop their
own LLM

• Pre-Fine-Tuned Models

• Julia,Kokkos,OpenMP,BLAS,High Order

Explicit PDE

Lead: Pedro Valero-Lar, ORNL

• Synergy with DOE SciDAC RAPIDS-2 and DOE ASCR AI for Science (Durban and Ellora Projects)

	Slide 1: S4PST: Stewardship of Programming Systems and Tools
	Slide 2: Acknowledgement
	Slide 3: Scientific Computing Software Development During Exascale Computing Project (ECP) and Post-ECP Era
	Slide 4: 7 (6+1) Software Stewardship Organizations
	Slide 5: Consortium for the Advancement of Scientific Software (CASS)
	Slide 6: Why do we care about programming systems?
	Slide 7: Why do we care about programming systems?
	Slide 8: Observations during ECP
	Slide 9: Observations during ECP (Continued)
	Slide 10: What is S4PST?
	Slide 11: S4PST Community
	Slide 12: S4PST: Our portfolio for DOE’s Scientific Mission
	Slide 13: S4PST Activities
	Slide 14: S4PST Activities (Continued)
	Slide 15: S4PST Highlight
	Slide 16: S4PST – Highlights
	Slide 17
	Slide 18: S4PST Product Introduction (Extra Materials)
	Slide 19: OpenMP and OpenACC (UD, ORNL and ANL)
	Slide 20: LLVM in S4PST (LLNL, ANL, LBNL, ORNL)
	Slide 21: Kokkos Core – Maintaining Performance Portability Kokkos AI – MLIR and future AI application support
	Slide 22: Modern Fortran (LBNL)
	Slide 23: Open MPI (ORNL)and MPICH (ANL)
	Slide 24: UPC++ & GASNet-EX (LBNL)
	Slide 25: Legion (LANL,SLAC)
	Slide 26: SYCL (ALCF, OLCF, NERSC)
	Slide 27: HIP (ALCF, NERSC, OLCF)
	Slide 28: Incubation
	Slide 29: Automatic Differentiation (Enzyme)
	Slide 30
	Slide 31: LLMs for HPC Programming (ORNL)

