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Motivation

e [arge ML training workloads require a vast number of high-end GPUs

Meta engineers trained Llama 3 on computer clusters packing 24,576 NVIDIA H100 Tensor Core
GPUs, linked with RoCE and NVIDIA Quantum-2 InfiniBand networks.

To further advance the state of the art in generative Al, Meta recently described plans to scale its
infrastructure to 350,000 H100 GPUs.

@ G148 ™= . OpenAl utilized around 25,000 Nvidia A100 GPUs for training.

GPT4: Details leaked

Wide Open: NVIDIA Accelerates Inference on Meta Llama 3



https://medium.com/@daniellefranca96/gpt4-all-details-leaked-48fa20f9a4a
https://blogs.nvidia.com/blog/meta-llama3-inference-acceleration/#:~:text=Meta%20engineers%20trained%20Llama%203,NVIDIA%20Quantum%2D2%20InfiniBand%20networks.

Having all resources in one place is challenging



Having all resources in one place is challenging

e From hyperscalers’ perspective - Power Grid Limitations

Microsoft Azure CTO claims distribution of Al

training is needed as Al datacenters approach

power grid limits China has achieved a significant breakthrough in artificial intelligence by
successfully training a generative Al model across multiple data centers and
O Tditdsniiees. This feat was revealed by Patrick Moorhead, Chief Analyst

September 4, 202

Multi-Datacenter Training: OpenAI's Ambitious
Plan To Beat Google's Infrastructure //Gigawatt

Clusters, Telecom Networking, Long Haul Fiber,
Hierarchical & Asynchronous SGD, Distributed
Infrastructure Winners




Having all resources in one place is challenging

e From simple users’ perspective -
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Figure 1. Hourly AWS GPU availability over 12-hour period.
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We found failover to be especially valuable for scarce re-
sources (e.g., large CPU or GPU VMs). For example, depend-
ing on request timing, it took 3—-5 and 27 location attempts
to allocate 8 V100 and 8 T4 GPUs on AWS, respectively.

Yang et al. SkyPilot, NSDI'23

Guo et al, Cephalo: Harnessing Heterogeneous GPU Clusters for Training Transformer models
Strati et al, ML Training with Cloud GPU Shortages: Is Cross-Region the Answer?



https://www.usenix.org/system/files/nsdi23-yang-zongheng.pdf
https://arxiv.org/abs/2411.01075
https://dl.acm.org/doi/10.1145/3642970.3655843

Getting more resources

We can get more GPUs by allowing them to be:
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Challenges of heterogeneity

e Different specs: compute, memory, networking

GPU type FP16 TFLOPS Memory
H100 67 80 GB
A100 10.5 40 GB
V100 14 16 GB

T4 81 16 GB

Traffic Cost/GB Latency Bandwdith
Between ($) (ms) (GB/sec)
Same AZ (US) Free <1 1.45
Diff. AZ, same region (US) 0.01 0.9 142
Diff. regions (US) 0.02 31 0.63
Diff. continents (US/EU) 0.05 102 0.18




Challenges of heterogeneity

e Different specs: compute, memory, networking

GPU type FP16 TFLOPS Memory

H100 67 80 GB Traffic Cost/GB Latency Bandwdith
Between ($) (ms) (GB/sec)

A100 19.5 40 GB Same AZ (US) Free <1 1.45
Diff. AZ, same region (US) 0.01 0.9 142
Diff. regions (US) 0.02 31 0.63

V100 14 16 GB Diff. continents (US/EU) 0.05 102 0.18

T4 8.1 16 GB

=> Can create stragglers and OOM effects

=> We need to accurately model these effects



Challenges of heterogeneity

e Heterogeneous GPU types * cloud regions create large search space
=> We need to find what resources to allocate and where

=> We need to decide how to split our ML workload across these resources

(+ extra decisions: microbatch sizes, optimizations to use, etc)

10



Key requirements for ML training framework

1. Accurately model training time *+ memory footprint under all possible
allocation/partitioning scenarios

2. Find an optimal resource allocation + workload partitioning plan fast

3. Be elastic + support heterogeneity in job configuration

11



Issues with related work

1. Accurately model training time + memory footprint under all possible
allocation/partitioning scenarios
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Training time + memory footprint modeling can be inaccurate (even on

homogeneous environments) 12
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Issues with related work

2. Find an optimal resource allocation + workload partitioning plan fast

e Most systems do not consider heterogeneity

e Heterogeneous planners can be very slow => cannot easily adapt to
frequent resource changes

14



Issues with related work

3. Be elastic + support heterogeneity

Highly optimized systems do not support heterogeneity and elasticity

System Elasticity Support Heterogeneity Support
DeepSpeed
Megatron

Varuna

AYA

Parcae
SDPipe v
Hetu v

15



SAILOR

1. Accurately model training time *+ memory footprint under all possible
allocation/partitioning scenarios

2. Find an optimal resource allocation + workload partitioning plan fast

3. Be elastic + support heterogeneity

16



SAILOR overview

How to train?
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SAILOR overview

Training job specs
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SAILOR simulator

Resource topology
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Memory requirements estimation

Estimate memory taking into account all sources of memory consumption
For example, assuming training with full precision and Adam optimizer:

1 copy of parameters for the model

2 copies of parameters for the optimizer
1 copy for communication

Activations

Gradients

+ Fragmentation

Rajbhandari et al. ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

22


https://arxiv.org/pdf/1910.02054

SAILOR Planner
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Planner requirements

e Consider different combinations of heterogeneous GPUs and
zones/regions

e Prune search space efficiently

24



Planner key solutions

e Consider different combinations of heterogeneous GPUs and
zones/regions
o Dynamic-programming based approach
o Allow different degrees of tensor parallelism per stage/per

replica

25



Planner key solutions

e Prune search space efficiently to save search time
o Constrain tensor parallelism within a node
o Early-stop of cases that would lead to OOM
o Maximum data parallelism based on scaling and all-reduce overheads
o Constrain data parallel communication within a region

o Topological sorting based on network bandwidth

26



Evaluation



Planner evaluation

2 setups:

1. Homogeneous setup: only A100 GPUs, one cloud zone

=> SAILOR leads to higher throughput due to better modeling
2. Heterogeneous setup: A100 + V100 GPUSs, 4 cloud zones

=> SAILOR leads to higher throughput due to using more GPUs

=> Short search time due to efficient planning algorithm



Only A100, 1 zone
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Homogeneous setup
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better in all parts of the

Homogeneous Setup ( SAILOR is consistently
L trace
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Heterogeneous setup
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Heterogeneous setup
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Heterogeneous setup
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Summary

e e are building SAILOR, a system to automate training and fine-tuning of
large models on heterogeneous environments

® 3 major components:
o A to accurately estimate:
m training time
m  memory footprint under all possible scenarios

o A planner to find resource allocation and parallelization plans fast

o An elastic training system with heterogeneity support

35



