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| Advancing Earth system modeling through data-model integration |

* Understanding and predicting Earth systems are crucial for society and environment.

* Current observational systems capture only a fraction of Earth's complexity, making
Earth system models (ESMs) essential to improve process understanding, reconstruct
past conditions, and predict future changes.
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s Our research advances Earth system modeling by combining diverse data and models,
leveraging advanced computational methods, and integrating Al/ML techniques to
enhance predictions and support informed decision-making.



| Five paradigms of Earth system modeling |

4™ Paradigm:

Data-driven ML Model

A deluge of Earth

. system data have
ool eliiEHNEINVOOEIN | hecome available:

Derive ML models
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: simulation data.
Theoretical Model complex, coupled

Earth system

Develop physical
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Physical Climate System

Experiments to
explain or empirically
describe natural
phenomena

Biogeochemical Cycles
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3'd Paradigm:

Computational Model Energy Exascale Earth System
Model (E3SM)

Department of Energy (DOE)’s

Computational models,
simulating complex Earth
system
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s Uncertainty quantification (UQ) is crucial for physics-based Earth system modeling to
enhance prediction accuracy and support informed decision-making.
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ML techniques for fast physical model prediction and UQ

Surrogate Modeling

Inversion-Free Prediction

Generative Al

Build a fast surrogate of expensive
numerical model based on
ensemble model simulations

'x,,

ae ﬁ surrogate

el te

Input ensemble

Output ensemble

e Surrogate modeling reduces
time of a single model run.

e Evaluation of the surrogate in
UQ reduces total costs.

* Use NNs to build a surrogate.

Learn obs-pred relationship and
then make direct prediction from
observed data

Traditional two-step model prediction
/—\ forw?rd

| i simulation e
@gﬁs}, Model —— Prediction

Our inversion-free model prediction

forward Observed data
simulation Samples of l

Data

observation variables

Samples of
prediction variables

Prediction

M | .
ode ML model with UQ

* Avoids expensive, iterative
inverse modeling.

* Computationally efficient, fully
parallel, fast data assimilation.

* Consider various uncertainties.

Diffusion model generates samples
for both forward and inverse UQ by
evaluating NN

Sample Data Preparation Labeled Data Pairs Generation using Monte Carlo Estimator

- - .
X[y X = G(Y, % ¢); with Z, = X|Y and Z, = Z,Z = N(0.1)

e Qur conditional diffusion model

uses NN to estimate a generator
and evaluates the NN to
generate samples for UQ.

* Computationally and storage

efficient.

% HPC and ML are critical tools to advance physics-based Earth system modeling and UQ.




X
| Ensuring trustworthiness in data-driven Earth system modeling

4t Paradigm:

Data-driven ML model

A deluge of Earth system
data have become
available: Derive ML
models from observation
and simulation data.
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Long Short-Term Memory (LSTM)

LSTM network learns system
dynamics from observations of
environmental drivers and
carbon/water fluxes to predict
future carbon/water fluxes

Input: Observation of

environmental drivers Terrestrial Ecosystem

Biogeochomical cycles
Pholosynthesss BVOCs

Surface energy fluxes

Prcoiation  Hydrology

LSTM simulates a
mapping for the inputs
over time to an output
to consider the memory
effect of drivers.

Output: Observation of
carbon/water flux

A 4

** ML models have shown success in Earth system prediction, but they have
challenges for trustworthy prediction:

* How can we ensure that ML solutions generalize across space and time?

 How do we verify that models are making good predictions for the right
reasons?

 How can we guarantee prediction reliability under changing
environmental conditions?



Advanced, explainable, reliable ML for Earth system prediction

Advanced ML

Explainable ML

Reliable ML

« Integrate diverse data from satellite
and sensor networks

» Develop advanced model
architectures
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« Permutation analysis: SHAP

« Gradient-based method: IG

* Interpretable LSTM network

« Attention maps of transformer model
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% Validate model decisions ¢
ensuring physical consistency;
identify key drivers for prediction.

L)

* Leverage diverse data and
advanced ML models to improve
accuracy and generalizability.

» Quantify prediction uncertainty
to evaluate & ensure reliability
under changing conditions.



o
| Advanced ML models with diverse data enhance generalization Q,.

*» Advanced ML model, integrating

Problem: Predict streamflow across the US;

Streamflow Transformer Encoder o & | l
Data: 35 years of CAMELS dataset of 531 o Bl B —
. . . . % * $ 1
basins and Sentinel-2 satellite images; P I RS Attributes MLP . él
. . . 2 [$]
Model: Transformer + LSTM integrating polat snz) i me e B
; 29191y ~% ea o
multiple data sources; B ga
LSTM Model ) s’i MuIti-H.ead 5
Evaluate: Performance in spatiotemporal o ——
. . . Norm
out-of-sample prediction using the NSE @ @ len _ Geology [ 3 Remote Sensing (RS) Image
metric (Value Of 1 iS the best). Matstralogieal Geomorphology | 7 of a Hydrological Basin
Time series Static Attributes Position Embedding ~ Patches

Perform 3-fold cross-validation.

1980-2007 2008-2014

354 basins Training

177 basins Evaluation

diverse data, improves prediction
performance at out-of-sample regime.

Number of basins
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Median: 0.75 out-of-sample

dataset; each fold
shown in
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NSE value: = 1.0 means perfect fit; > 0.65 suggests good prediction

* Singh, Lu, and Tayal, NeurlPS, 2024. Tayal, Renganathan, and Lu, ERL, 2024.



Explainable Al can guide ML and process-based model development Q,,

‘ Transformer-based model Interpretable LSTM (ILSTM)

e Visualize Transformer model’s learning process to * iLSTM explains variable and temporal importance
improve prediction understanding. through its advanced model architecture.
Input Series Self-Attention Map Interpretable LSTM
“ ‘ 2 & e Variable-wise
t—2 t—1 t temporal attention . .
IW M‘ : e vewse | © Uses variable-wise
| ‘ \ I ; ] T V ( I J | X ]w—- - (Y | SEimetioh hidden matrix;
»J | 4,1\\“&“1‘ : T — * Adds temporal and
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Cross-Attention Map (H1) Cross-Attention Map (H2) . ] o
* iLSTM achieved more accurate prediction;

» Self-attention identifies temporal pattern of each driver; . . . . .
P P ’ * iLSTM revealed new variable relationships and their

 Cross-attention captures relationships among drivers. temporal importance.

*» Advanced interpretable ML models enhanced prediction accuracy, revealed learning
processes, and provided insights to inform process-based model development.

* Lu, Ricciuto, and Liu, /ICLR, 2022. Tayal, Renganathan, and Lu, ICML, 2024. 9



ML model needs UQ for rustworthy prediction under ciimate change

ML model needs UQ for trustworthy prediction under climate change

(2

e ML model typically perform well under conditions similar to those they have been trained
on but struggle with new, unseen conditions.

e |dentifying the reliability of ML predictions is crucial for their effective use.

 UQ helps address the challenge of assessing ML model reliability in climate projection.
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Use LSTM to predict streamflow in East River from met. data.

Train on 20 years of data (blue dots in cool years); and evaluate on
subsequent 19 years (red dots in warm years)

LSTM performance deteriorates when extrapolating the warmer years.
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* Topp, S., Barclay, J., Diaz, J., Sun, A., Jia, X., Lu, D., Sadler, J., and Appling A., WRR, 2022.



| UQ ensures reliable prediction under changing conditions {

Our UQ method produces prediction
and its uncertainty using three NNs.

| Step 3: Train two dense networks
| to produce uncertainty bound

I [¥ie¥, ¥"] of the prediction

I tow

VYV =y =Bl Y =y +aug
I where a and g are calculated in
| Step 4 by root-finding method. [ Dense layer ]

[ Dense layer ]

Step 2: Extract values of h,
: Step 1: Train one LSTM network to predict current
| streamflow ¥: based on previous t days of
| meteorological data x;, X, ... X;
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Rock creek

* Input: precip, max and min air T

* Qutput: daily streamflow
*  Model: LSTM network

* UQ: calculate 90% prediction interval

* In Quigley where test and training

conditions are similar, LSTM accurately

predicts the streamflow.

Our UQ method accurately quantifies
prediction uncertainty consistent with

the confidence level.

* In Rock Creek, LSTM cannot
predict the test data well due to
data shift and new conditions.

* Our UQ method detects this shift
by producing a wider uncertainty
consistent with larger errors.

¢ Our error-consistent UQ method prevents overconfidence and

ensures reliable predictions under changing conditions.

* Luetal., JHM, 2022;

Liu, Lu, Painter, Griffiths, and Pierce, Frontiers in Water, 2023.

11



| From physics-based to data-driven, now to Al foundation models

3rd Paradigm:

Computational Model

Al Foundation Applications
Model

Computational models,
simulating complex Earth
system

Weather, climate

prediction
Spatiotemporal Climate
- Training Adaptation projection
p—— —)
:> Time series Climate
4th Paradigm: 2 g fes. . simulation
Data-driven ML model o ER P downscaling

Iy,

'-:'.‘v“".\ «
ML models simulate the

Earth system from data - Database E3SM simulation

acceleration

* An Al foundation model is a large-scale neural network trained on
extensive, diverse datasets and adaptable to a variety of modeling tasks.

12



| Al foundation model can advance Earth system modeling &
| Heterogeneous Data | | Scalable Model | | Various Applications |

* Observations from lab, * Vision Transformer model * Earth system is a coupled system.
field, and satellite * Integrate heterogenous data * Its simulation advances various

* Model simulation data e Scale with data size and resolution scientific applications and

+ Data have multiple types, e impacts multiple sectors.
scales, and resolutions. e * Foundation models can save

o

effort, cost, and energy.
* These heterogeneous data &Y

cannot be fully integrated
by numerical models and

a A .

A

task-specific ML models. E——
Spatiotemporal
e Foundation model:
1‘ — * |Integrate rich, multimodal data

* Reduce reliance on labeled data
* Improve accuracy, efficiency, and generalization
* Ensure high versatility

Time series & = ™ Database

13



| ORBIT: our Al foundation model for Earth system modeling

Pre-train on CMIP6 Develop large VIT models to enable effective learning
simulation dataset of Earth systems from extensive data
¢ SimU|at|On data from 10 ST T iy Variable Variable Transformer ?WW
T e : Tokenization % Training Block NEIEREE = N e ORBIT has four
CMIP6 models; e S b :
o | Tl 2 ] , model sizes
* Each model provides 65 to Humidity 3 |oool B with 115M, 1B,
100 years of data at 6h A et J =%E g [ 10B, and 113B
interval; [ S & HEE parameters.
: : : “: | O\EO i3 e Itisthe |
* Consider 91 variables with = Oomg| @ 3| | tist O‘I? Ia]:gest
spatial-res of 128*256; 1 (I Al model for
24 3 E Earth system.
I

* 1.2 million data point and Temperature
223.6 billion tokens.

ESGF&

Earth System Grid Federation

Larger models are more effective in Earth system modeling

 As model size increases, the required

100,000
V" £ 50000 training samples decreases in Earth system
Coupled Model Intercomparison Project 5 Bﬂ,ﬂﬂ'ﬂ' . . .
5 40,000 modeling fine-tuning tasks;
Metrics Package E . . . . . o
2 m’mg l . * This data efficiency can lead to significant
* Use ESGF to access data and 1151 Mo s 108 cost and time savings in various Earth
. oael size
PMP to select quality data. system modeling applications.
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] parallel|

GPU 6 Tensor-
| parallel|
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Tensor- :

| parallell

_ |

Sequence-Parallel

Collaborating with
Microsoft DeepSpeed4Science Team
AMD Team on Frontier platforms for Al

=" Microsoft AMDgN\

OAK RIDGE

National Laboratory

%

% We develop a novel hybrid model-data-sequence
parallelism that merges

Tensor
* Pipeline

* Sequence
parallelism orthogonally to accelerate ORBIT training.

91 Channel Variables

E: 100% T: 1.E-01

E: 83% T: 6.E-02

E: 72% T:4.E-02
Sequence-Parallel sk

E:61% T: 1.E-02

E- 570, T:8.E-03

’ E:38% T:5.E-03

E:89% 1.9 E-04
E:84% T:5.E-04

E: 68% T3 E-(4
E:69% T:2.E-04

E: 100% T: 1.E-03
E: 98% T: 6.E-04
E:88% T:3.E-04

E:81% T:2.E-04
E: 73% T: 8.E-05
E:58% T:6.E-05._

Walltime per Observation Data Point (sec)

E:93% T:1.E-0
T: wall time per observation data point (sec) E: 90% T: 6.E-06

E: strong scaling efficiency E:88% T.4.E-06
LEADERSHIP

COMPUTING
Number of GPUs

» ORBIT achieves 1.6

exaflop sustained
computing throughput
on 6,144 Frontier nodes
(49,152 GPUSs), with
strong scaling efficiency
between 44% to 85% for
model sizes of 100M,
1B, 10B, and 113B.
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ORBIT provides fast and accurate weather forecasts

Finetune ORBIT using ERAS data for weather forecast

Variable 2m_temperature, at time: 2017-01-04 02:00, lead time: 72 hrs

Predicted 2m_temperature

Geopotential at 500 hPa (z500) Temperature at 850 hPa (t850) 120°W  60°W 0° 60°E 120°E 180°
1.0 1.0 : ,
0.9 60°N 60’ -, 9
5 0.8 O 30°N 30° ]
o V. 0 0o 3
$ 508 . 4 R
-202
0.6 0.7 30°S 30° g
-40 £
0.6 60°S 60° IS
1 14 30 1 14 30 e o ,
Lead Time (days) Lead Time (days) e B = = e s 0°
Temperature at 2m (t2m) Zonal wind at 10 meters (ul0)
1.00 1.0 Ground Truth 2m_temperature
120°W  60°W 0° 60°E 120°E 180°
0.95 0.8 T . ‘
0 0 0N ™ . B2 o
2 0.90 20.6 . 4 %
< < 30°N ¢ of 2
04 o o E
0.85 0 0 0l
0.80 0.2 30°S 30° E,
' 1 14 30 1 14 30 . Jr-20 g
Lead Time (days) Lead Time (days) 00”5 o0 N
B ORBIT mmm ClimaX (Al model) B FourCastNet (ML model) B IFS (numerical model) = = =
120°W  60°W 0° 60°E 120°E 180°
‘ - - - L] L] Ll Ll
*» ORBIT achieves competitive performance in weather Model Size 115 million
forecasting, matching or surpassing state-of-the-art GPUs 1 GPU

numerical, machine learning, and foundation models.

Forecast Time 0.04 sec
16



ORBIT can be used for weather/climate downscaling

* Finetune ORBIT using pairs of low-resolution and high-resolution data for downscaling

Input: low-res data | Vargble ! Variable High-res data

[ Tokenization I_I Aggregation .
1 E u—— Prediction: 2m_temperature (K)
Input: 2m_temperature (K) : “.i 2 -g : |_| 300
: FEM I
! < || B
Ie “ o oEd| E,
I f L g | I—"— § 8 8 i) 240
g g4 >| B E=g IR
I _:S"g I g g 50 S ngimizo 2% 300 350
: < ﬁ : _Iﬁ'_ A % Eg:é Ground truth: Zrﬁ_tejperature (K)
' . £ |LJEL - e
| 2 ooo| B 2 |
: -‘35 ! - ) 3 H
I <2 S E E :
I Elji = E X ,
I I 1
________________ 1
* We adapted ORBIT for climate downscaling by replacing its embedding layers and
prediction heads, while retaining its attention layers and variable aggregation module.
28km-res ERAS 7km-res precipitation ORBIT Prediction

50°N S e -

45°N /ﬁ l = Emsemble Land-surface and Energy and

40°N w0 (R climate model hydrodynamic human-related
. simulation modeling modeling

N *f\ B | 9 ’9)

30°N 0N | e >

3 - - [ - n X Downscaling ,Z;;,!" A :‘ Impact modeling
et 120°W 110°W 100*W 90*W aow:vLm'w > 120'W  110'W  100°'W  90°W w-:‘\ oW DWW W W oW oW ‘ /“2%"' 3

ARN
i{
b »
Y i J

Model outputs inform decisions
and feedback to sub-systems

% ORBIT has potential to enhance high-resolution
climate modeling and support critical decision-making.
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| Al foundation model has potential to tfransform Earth system modeling "

?RBIT

Weather, Earth
Climate System
Prediction Simulation

Days

Energy Exascale Earth
System Model (E3SM)

Advancing Earth system
modeling for water and

tNEn
s e community resilience

* ORBIT has potential to advance
Earth system modeling by
leveraging diverse datasets and
multi-model analysis.

Fine-tuning forecasts: ORBIT brings long-range
weather prediction within reach

November 13, 2024

Researchers at Oak Ridge National Laboratory used the Frontier
supercomputer to train the world’s largest Al model for weather
prediction, paving the way for hyperlocal, ultra-accurate forecasts. This
achievement earned them a finalist nomination for the prestigious Gordon
Bell Prize for Climate Modeling.

Gordon Bell Prize for Climate Modeling Finalist
Top Supercomputing Achievement Award

. Oak Ridge National Laboratory receives honors

in 2024 HPCwire Editors’ Choice award

November 19, 2024

ORNL has been recognized in the 21st edition of the HPCwire Readers’
and Editors’ Choice Awards, presented at the 2024 International
Conference for High Performance Computing, Networking, Storage and
Analysis in Atlanta, Georgia.
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| Advancing Earth system prediction through data-model integration

Numerical Model

Data-Driven ML Model

Al Foundation Model (FM)

Challenges:

e High computational costs;
e Large, multi-uncertainty;
e Cannot integrate diverse data;

Our study:

e Emulators; multiscale modeling
e UQ; data assimilation
e Physics-ML hybrid modeling

Challenges:

* Lack of explainability
e Lack of energy conservation
* Need trustworthiness

Our study:

* Interpretable ML
e Physics-informed ML
e Reliable ML; UQ for ML

Weather, (gl P
Climate

Earth
System

Prediction

Simulation

Energy Exascale Earth
System Model (E3SM)

Advancing Earth system
modeling for water and
community resilience

e Afoundation model is a large NN trained
on massive data at scale that can be
adapted to broad applications

Integrate “big data” and knowledge
Use for a wide range of modeling tasks
Save cost, effort, and energy

Improve performance, understanding, and
generalizability

* ML at scale requires scalable models and advanced techniques tailored to the model,
data, and HPC systems, to ensure efficient modeling and science advancement.
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