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❖ Our research advances Earth system modeling by combining diverse data and models, 
leveraging advanced computational methods, and integrating AI/ML techniques to 
enhance predictions and support informed decision-making.

Advancing Earth system modeling through data-model integration

• Understanding and predicting Earth systems are crucial for society and environment. 

• Current observational systems capture only a fraction of Earth's complexity, making 
Earth system models (ESMs) essential to improve process understanding, reconstruct 
past conditions, and predict future changes.
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A deluge of Earth 
system data have 
become available; 
Derive ML models 
from observation and 
simulation data.

Five paradigms of Earth system modeling

1st Paradigm:

Empirical Model

Experiments to 
explain or empirically 
describe natural 
phenomena

Develop physical 
laws, theoretical 
models

Computational 
models, simulating 
complex, coupled 
Earth system

2nd Paradigm:

Theoretical Model

3rd Paradigm:

Computational Model

4th Paradigm:

Data-driven ML Model

1600 1950 2000 2020

5th 
Paradigm:

AI 
Foundation 

Model
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Computational models, 
simulating complex Earth 
system

3rd Paradigm:

Computational Model
Department of Energy (DOE)’s 
Energy Exascale Earth System 

Model (E3SM)

Physical-based ESM prediction 

Physics-based Earth system prediction is filled with uncertainty

❖ Uncertainty quantification (UQ) is crucial for physics-based Earth system modeling to 
enhance prediction accuracy and support informed decision-making.



5

Data 
Iterative

model inversion

Our inversion-free model prediction

Prediction 
with UQ

Observed data 

Model

Samples of 
observation variables

Samples of 
prediction variables

forward 
simulation

ML model

Traditional two-step model prediction

PredictionModel

forward 
simulation

Learn obs-pred relationship and 
then make direct prediction from 

observed data

• Avoids expensive, iterative 
inverse modeling.

• Computationally efficient, fully 
parallel, fast data assimilation.

• Consider various uncertainties. 

• Surrogate modeling reduces 
time of a single model run.

• Evaluation of the surrogate in 
UQ reduces total costs.

• Use NNs to build a surrogate.

Build a fast surrogate of expensive 
numerical model based on 

ensemble model simulations 

Input ensemble Output ensemble

ML 
surrogate

ML techniques for fast physical model prediction and UQ

Surrogate Modeling Inversion-Free Prediction

Diffusion model generates samples 
for both forward and inverse UQ by 

evaluating NN

Generative AI

• Our conditional diffusion model 
uses NN to estimate a generator 
and evaluates the NN to 
generate samples for UQ.

• Computationally and storage 
efficient.

❖ HPC and ML are critical tools to advance physics-based Earth system modeling and UQ.
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❖ ML models have shown success in Earth system prediction, but they have 
challenges for trustworthy prediction:

• How can we ensure that ML solutions generalize across space and time?

• How do we verify that models are making good predictions for the right 
reasons? 

• How can we guarantee prediction reliability under changing 
environmental conditions?

Ensuring trustworthiness in data-driven Earth system modeling

A deluge of Earth system 
data have become 
available; Derive ML 
models from observation 
and simulation data.

4th Paradigm:

Data-driven ML model

Input: Observation of 

environmental drivers

Output: Observation of 

carbon/water flux

LSTM network learns system 
dynamics from observations of 
environmental drivers and 
carbon/water fluxes to predict 
future carbon/water fluxes

LSTM simulates a 
mapping for the inputs 
over time to an output 
to consider the memory 
effect of drivers.
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NSE value: = 1.0 means perfect fit;  > 0.65 suggests good prediction

• Integrate diverse data from satellite 
and sensor networks 

• Develop advanced model 
architectures

❖ Leverage diverse data and 

advanced ML models to improve 

accuracy and generalizability.

• Permutation analysis: SHAP

• Gradient-based method: IG

• Interpretable LSTM network

• Attention maps of transformer model

Interpretable LSTM

iLSTM iLSTM iLSTM

❖ Validate model decisions 

ensuring physical consistency; 

identify key drivers for prediction.

• Bayesian neural networks

• Gaussian processes

• Ensemble-based methods

• Prediction interval methods

❖ Quantify prediction uncertainty 

to evaluate & ensure reliability 

under changing conditions.

Advanced, explainable, reliable ML for Earth system prediction

Advanced ML Explainable ML Reliable ML
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• Problem: Predict streamflow across the US;

• Data: 35 years of CAMELS dataset of 531 
basins and Sentinel-2 satellite images; 

• Model: Transformer + LSTM integrating 
multiple data sources; 

• Evaluate: Performance in spatiotemporal 
out-of-sample prediction using the NSE 
metric (value of 1 is the best). 

• Perform 3-fold cross-validation.

1980-2007 2008-2014

354 basins Training

177 basins Evaluation

❖ Advanced ML model, integrating 
diverse data, improves prediction 
performance at out-of-sample regime.

NSE value: = 1.0 means perfect fit;  > 0.65 suggests good prediction

NSEs in the 3-fold, 
out-of-sample 
dataset; each fold 
shown in
different symbol

Geo_RS_LSTM

• Singh, Lu, and Tayal, NeurIPS, 2024.         Tayal, Renganathan, and Lu, ERL, 2024.

Advanced ML models with diverse data enhance generalization
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• Visualize Transformer model’s learning process to 
improve prediction understanding.

• Self-attention identifies temporal pattern of each driver;

• Cross-attention captures relationships among drivers.

• Lu, Ricciuto, and Liu, ICLR, 2022.     Tayal, Renganathan, and Lu, ICML, 2024.

❖ Advanced interpretable ML models enhanced prediction accuracy, revealed learning 
processes, and provided insights to inform process-based model development.

Explainable AI can guide ML and process-based model development

Transformer-based model

• iLSTM explains variable and temporal importance 
through its advanced model architecture.

Interpretable LSTM

iLSTM iLSTM iLSTM

• iLSTM achieved more accurate prediction;

• iLSTM revealed new variable relationships and their 
temporal importance.

• Uses variable-wise 
hidden matrix;

• Adds temporal and 
variable attention;

Interpretable LSTM (iLSTM) 
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Train: 1981-1999  Test: 2000-2019 

• Use LSTM to predict streamflow in East River from met. data.

• Train on 20 years of data (blue dots in cool years); and evaluate on 
subsequent 19 years (red dots in warm years)

• LSTM performance deteriorates when extrapolating the warmer years.

• ML model typically perform well under conditions similar to those they have been trained 
on but struggle with new, unseen conditions.

• Identifying the reliability of ML predictions is crucial for their effective use.

• UQ helps address the challenge of assessing ML model reliability in climate projection.

• Topp, S., Barclay, J., Diaz, J., Sun, A., Jia, X., Lu, D., Sadler, J., and Appling A., WRR, 2022.

ML model needs UQ for trustworthy prediction under climate change
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East River Watershed, CO
Quigley

Rock creek

• Input: precip, max and min air T

• Output: daily streamflow

• Model: LSTM network

• UQ: calculate 90% prediction interval

• In Quigley where test and training 
conditions are similar, LSTM accurately 
predicts the streamflow.

• Our UQ method accurately quantifies 
prediction uncertainty consistent with 
the confidence level.

Catchment Quigley Catchment Rock creek

• In Rock Creek, LSTM cannot 
predict the test data well due to 
data shift and new conditions.

• Our UQ method detects this shift 
by producing a wider uncertainty 
consistent with larger errors. 

• Lu et al., JHM, 2022;             Liu, Lu, Painter, Griffiths, and Pierce, Frontiers in Water, 2023.

Our UQ method produces prediction 

and its uncertainty using three NNs.

❖ Our error-consistent UQ method prevents overconfidence and 
ensures reliable predictions under changing conditions.

UQ ensures reliable prediction under changing conditions
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From physics-based to data-driven, now to AI foundation models

❖ An AI foundation model is a large-scale neural network trained on 

extensive, diverse datasets and adaptable to a variety of modeling tasks. 

Computational models, 
simulating complex Earth 
system

3rd Paradigm:

Computational Model

ML models simulate the 
Earth system from data

4th Paradigm:

Data-driven ML model
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Scalable ModelHeterogeneous Data

• Observations from lab,  
field, and satellite

• Model simulation data

• Data have multiple types, 
scales, and resolutions.

• These heterogeneous data 
cannot be fully integrated 
by numerical models and 
task-specific ML models.

Various Applications

• Vision Transformer model
• Integrate heterogenous data
• Scale with data size and resolution 

• Earth system is a coupled system. 
• Its simulation advances various 

scientific applications and 
impacts multiple sectors.

• Foundation models can save 
effort, cost, and energy.

AI foundation model can advance Earth system modeling

Foundation model:

• Integrate rich, multimodal data
• Reduce reliance on labeled data
• Improve accuracy, efficiency, and generalization
• Ensure high versatility
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• ORBIT has four 
model sizes 
with 115M, 1B, 
10B, and 113B 
parameters.

• It is the largest 
AI model for 
Earth system.

• Simulation data from 10 
CMIP6 models;

• Each model provides 65 to 
100 years of data at 6h 
interval;

• Consider 91 variables with 
spatial-res of 128*256; 

• 1.2 million data point and 
223.6 billion tokens.

Pre-train on CMIP6 
simulation dataset

Develop large ViT models to enable effective learning 
of Earth systems from extensive data

• Use ESGF to access data and 
PMP to select quality data.

• As model size increases, the required 
training samples decreases in Earth system 
modeling fine-tuning tasks;

• This data efficiency can lead to significant 
cost and time savings in various Earth 
system modeling applications.

Larger models are more effective in Earth system modeling

ORBIT: our AI foundation model for Earth system modeling
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Collaborating with 

• Microsoft DeepSpeed4Science Team

• AMD Team on Frontier platforms for AI

❖ We develop a novel hybrid model-data-sequence 
parallelism that merges 

• Tensor
• Pipeline
• Data
• Sequence 

parallelism orthogonally to accelerate ORBIT training.

➢ ORBIT achieves 1.6 

exaflop sustained 

computing throughput 

on 6,144 Frontier nodes 

(49,152 GPUs), with 
strong scaling efficiency 

between 44% to 85% for 

model sizes of 100M, 

1B, 10B, and 113B.

ORBIT achieves strong scaling efficiency on Frontier supercomputer
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ORBIT provides fast and accurate weather forecasts  

Model Size 115 million

GPUs 1 GPU

Forecast Time 0.04 sec

• Finetune ORBIT using ERA5 data for weather forecast

❖ ORBIT achieves competitive performance in weather 

forecasting, matching or surpassing state-of-the-art 

numerical, machine learning, and foundation models. 
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ORBIT can be used for weather/climate downscaling

• Finetune ORBIT using pairs of low-resolution and high-resolution data for downscaling

Input: low-res data High-res data

Emsemble
climate model 
simulation

Land-surface and 
hydrodynamic 
modeling

Energy and 
human-related 
modeling

Model outputs inform decisions 
and feedback to sub-systems

• We adapted ORBIT for climate downscaling by replacing its embedding layers and 
prediction heads, while retaining its attention layers and variable aggregation module.

❖ ORBIT has potential to enhance high-resolution 

climate modeling and support critical decision-making. 
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AI foundation model has potential to transform Earth system modeling 

Gordon Bell Prize for Climate Modeling Finalist

Top Supercomputing Achievement Award  

❖ ORBIT has potential to advance 
Earth system modeling by 
leveraging diverse datasets and 
multi-model analysis.
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Challenges: 

• High computational costs; 
• Large, multi-uncertainty; 
• Cannot integrate diverse data;

Our study: 

• Emulators; multiscale modeling
• UQ; data assimilation
• Physics-ML hybrid modeling

• A foundation model is a large NN trained 
on massive data at scale that can be 
adapted to broad applications

– Integrate ”big data” and knowledge

– Use for a wide range of modeling tasks

– Save cost, effort, and energy

– Improve performance, understanding, and 
generalizability

Challenges: 

• Lack of explainability 
• Lack of energy conservation
• Need trustworthiness 

Our study: 

• Interpretable ML
• Physics-informed ML
• Reliable ML; UQ for ML

Advancing Earth system prediction through data-model integration

Numerical Model Data-Driven ML Model AI Foundation Model (FM)

❖ ML at scale requires scalable models and advanced techniques tailored to the model, 
data, and HPC systems, to ensure efficient modeling and science advancement.
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