
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Sustainable HPC Software:
Lessons from the Trenches
(A Maintainer's Perspective)

Ma rch 19 , 2025 | Engelberg , Swi tzer lan d

Damien Lebrun-Grandié
Computational Sciences and Engineering Division

2

PESO
Partnering for Scientific Software
Ecosystem Stewardship Opportunities

https://pesoproject.org

PESO PARTNERSHIPS

STAKEHOLDER ENGAGEMENT AND
CONSORTIUM PARTNERSHIPS

COMMUNITY
DEVELOPMENT

Consortium
Applications
Community

Computing
Facilities

Better Scientific
Software (BSSw)
Fellowship
Program

Workforce

Commercial
HPC
Companies

US
Agencies

Industrial
Users

KEY PESO GOALS

▪ Enable applications to realize benefits of a software ecosystem
▪ Emphasize software product quality, continued fostering of software

product communities, and delivery of products, working with CASS

PESO SERVICES

INTEGRATION PARTNERSHIPS

Provide resources and support for
portfolio build, integration, testing
▪ Spack integration

▪ CI testing
▪ Portfolio support & management

Collaboration with SSOs

SQA & SECURITY

Provide infrastructure to support and
leverage product team SQA
▪ Supply chain, product quality
▪ Testing, documentation

PESO PRODUCTS

E4S AND SPACK

▪ Support for product integration
▪ Features for consortium products
▪ Documentation, training

PORT & TEST PLATFORMS

▪ Frank test & devpt system
▪ Cloud resources
▪ Documentation, training

BSSw.io CONTENT

▪ Articles on scientific software
productivity and sustainability

The PESO Project exists to preserve, sustain, and advance the investments made by

the Exascale Computing Project in a robust, versatile, and portable HPC software

ecosystem and the people who make the ecosystem effective. Partnership with CASS .

PIs: M. Heroux and L.C. McInnes

Scientific software
ecosystem benefits
(technical and community)

100,000+
Lines of code replaced with

high-quality libraries and tools

10,000+
Community members via

ecosystem collaborations

1,000+
Code teams share ecosystem

costs and benefits

100+
Speedup using advanced

devices like GPUs

10+
Reduction in build times via

Spack build caches

1
Source code base for all

computing systems

2 2

3

PESO SERVICES

INTEGRATION PARTNERSHIPS

(Jim Willenbring, SNL)

Software portfolio management and integration
(in collaboration with and co-funded by SSOs)

Damien Lebrun-Grandie, ORNL, On-node
programming systems (w. S4PST)

Hui Zhou, ANL, Inter-node programming systems (w.
S4PST)

Bill Hoffman, Kitware, Tools (w. STEP & CORSA)
Satish Balay, ANL, Math (w. FASTMath)
Patrick O’Leary, Kitware, Data & viz (w. RAPIDS)
Matteo Turilli & Mikhail Titov, BNL, Workflows (w.

SWAS)
Sam Browne, SNL, NNSA software (funded by NNSA)

SQA & SECURITY

(David Bernholdt, ORNL)

Ross Bartlett, SNL; Berk Geveci, Kitware;

Jim Willenbring, SNL

PESO PRODUCTS

E4S (Sameer Shende, U Oregon)

Luke Peyralans, Wyatt Spear, Jordi
Alcaraz, Erik Keever

Spack (Todd Gamblin, LLNL)

Greg Becker, Tammy Dahlgren

PORT & TEST PLATFORMS (T.
Gamblin and S. Shende)

Partnership with U Oregon, cloud, etc.

BSSw.io CONTENT
(w. COLABS)

Ross Bartlett, SNL; Keith Beattie, LBNL
Pat Grubel, LANL; Mark Miller, LLNL

DOE Program Managers

ASCR: H. Finkel, B. Brown,

B. Spotz, S. Hier-Majumder,

R. Pino, D. Rabson

NNSA: S. Hammond

CASS Consortium
PESO, COLABS,

CORSA, FASTMath,

RAPIDS, STEP,

SWAS, S4PST

Advisory Board:
Reps from ANL,

LBNL, LLNL, LANL,

ORNL, SNL

CRLC:
ANL, BNL, LBNL,

LLNL, LANL, ORNL,

PNNL, SNL

Stakeholders:
Applications Community

Commercial HPC Companies

Industrial Users

US Agencies

Computing
Facilities:
ALCF, NERSC,

OLCF

PESO Organizational Chart
 PIs: Mike Heroux (ParaTools) and Lois Curfman McInnes (ANL)

PESO PARTNERSHIPS

STAKEHOLDER ENGAGEMENT (Mike Heroux, ParaTools)

CONSORTIUM PARTNERSHIPS (Terry Turton, LANL)
COMMUNITY DEVELOPMENT
(Lois Curfman McInnes, ANL)

Strategic engagement with consortium partners, applications,
facilities, industry and agencies

(in collaboration with and co-funded by SSOs)

William Godoy, ORNL, On-node programming systems (w. S4PST)
Rajeev Thakur, ANL, Inter-node programming systems (w. S4PST)
Sameer Shende, Univ of Oregon, Tools (w. STEP)

Sherry Li, LBNL, Math libraries (w. FASTMath)
Berk Geveci, Kitware, Data and viz (w. RAPIDS)
Lavanya Ramakrishnan & Hannah Cohoon, LBNL, Workflows (w. SWAS)

Mahantesh Halappanavar & Marco Minutoli, PNNL, ML/AI (w. FASTMath)

Unfunded partners: Strategic engagement with NNSA, communities of
practice, applications, facilities, industry and agencies

David Bernholdt, ORNL, RSE engagement (funded by COLABS)

Ulrike Yang, LLNL, NNSA software (funded by NNSA)
Partners at ALCF, NERSC, OLCF (funded by facilities, software integration)

Better Scientific Software
(BSSw) Fellowship Program

Elsa Gonsiorowski, LLNL,
Coordinator

Adam Lavely, LBNL, Deputy
Coordinator

Workforce

Mary Ann Leung, Sustainable
Horizons Institute

Daniel Martin, LBNL

Suzanne Parete-Koon, ORNL,
lead of HPC Workforce
Action Group

Strategy & Integration – Members are part of other SSO teams & NNSA, for tight collaboration

3 3

4

Stewarding the scientific computing software
ecosystem presents unique challenges.

I'll use examples from my experience as Kokkos
maintainer to explore these challenges.

Kokkos' reach necessitates careful maintenance.
Carelessness: not catastrophic, but costly.

What does the maintainer do?

• Loosely aware of the entire project

• Track ongoing work and make sure that it gets
reviewed and merged in a timely manner

• Direct the orchestra of developers and reviewers

• Has final responsibility

• Reviews when no reviewer can be found for
an important contribution

• Develops when no developer can be found to
fix an important bug

If something goes wrong, it’s eventually the
maintainer’s fault

Maintaining HPC Software Is Challenging

My journey:
User -> Contributor ->
Developer -> Maintainer/Lead

Kokkos in a few numbers:
50% ECP C++ software
technologies and applications
2k users registered on Slack
2.1k stars on GitHub
151 contributors
20+ developers from 7
institutions

5

Bus Factor: How Vulnerable Are You?

What? Single point of failure.

Risks:
Loss of critical expertise.
Stalled development and maintenance.
Increased vulnerability to bugs.
Difficulty onboarding new contributors.

Mitigation:
Cross-training and knowledge sharing.
Comprehensive documentation.
Modular code design.
Code reviews and pair programming.
Establish clear ownership and responsibilities.

Kokkos’ setbacks: 3 developers gone to Google, 1 to AMD in 2019

Distribute knowledge, especially in specialized HPC domains.
Be proactive and mitigate the risks. https://xkcd.com/2347

6

The Silent Drag: Technical Debt

What is it? "Quick fixes" create future rework.
Performance, scalability & maintainability suffer.

Sources: Deadlines, legacy code, evolving hardware, lack of refactoring.

Impact: Slows development, increases bugs, hinders innovation,
burns out maintainers.

Maintainer's Reality: Constant patching, frustration, struggling to keep up.

Solution: Prioritize refactoring, testing, documentation, and code reviews.

Kokkos’ anecdotes: OpenMPTarget, Qthreads, Tasking
No plan to add new backends at the start of the 3.X series.

Technical debt is not always avoidable, but it must be managed.
It's a hidden cost that significantly impacts long-term sustainability.

https://xkcd.com/292

7

Hyrum’s Law: Implicit Dependencies Bite

With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

Impact: Hidden dependencies block change.

Results: Breaking changes = pain, refactoring = hard.

Fix: Strict APIs, testing, versioning, communication.

Kokkos:
Public/private headers in Kokkos 3.X – Creation of Compatibility Guidelines
View of views incident in 4.3 – Tooling and Introduction of New Semantics

Users will use anything they can, even unintended features.
Be proactive and mitigate the risks.

https://xkcd.com/1172/

8

Kokkos Support Policies

• Build systems
Supporting multiple ways to build Kokkos has a real cost in increased testing and maintenance work.

• C++ language standard
Maintaining support for any particular C++ standard forever is impractical.
Since C++ standards are never formally deprecated or EOL’d, need to come up with own criteria.

• Compilers

• CPU/GPU microarchitectures

• Breaking changes
With enough users, every change is potentially a breaking change for someone.

• Backwards and future compatibility guidelines

• Deprecations

• Experimental features Develop and publicize support policies.
If you don’t test it, you don’t support it.

9

Closing Thoughts on Code Quality Metrics:
It's Not Just a Test

Best Practices: OpenSSF, xSDK guide us.
Post-ECP CASS Metrics Working Group

Metrics are Tools: Not just grades.

Focus: Improvement: The journey matters.

Continuous Quality: It's not a one-time test.

Kokkos’ efforts:
Clang-Tidy bugprone-* checks
Contributor/Organization dependency from LFX
OpenSSF Scorecard Report

Don't just "study for the test”.
Metrics show where to improve, not if you're good.

10

Let's work together to build a future of sustainable, reliable, and
impactful HPC software!

Funding Acknowledgments:

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Next-Generation Scientific Software Technologies program, under
contract number DE-AC05-00OR22725 (ORNL).

The End

11

Thank you for your attention.
C o n t a c t : D a m i e n L - G < l e b r u n g ra n d t @ o r n l .g o v >

	Slide 1: Sustainable HPC Software: Lessons from the Trenches (A Maintainer's Perspective)
	Slide 2: PESO
	Slide 3
	Slide 4: Maintaining HPC Software Is Challenging
	Slide 5: Bus Factor: How Vulnerable Are You?
	Slide 6: The Silent Drag: Technical Debt
	Slide 7: Hyrum’s Law: Implicit Dependencies Bite
	Slide 8: Kokkos Support Policies
	Slide 9: Closing Thoughts on Code Quality Metrics: It's Not Just a Test
	Slide 10: The End
	Slide 11: Thank you for your attention.

