
Google Cloud
Cluster Toolkit

Carlos Boneti
Sr. Staff Software
Engineer
Google Cloud

Cluster Toolkit Objective

“Make it easy for customers and
partners to deploy repeatable turnkey

HPC environments following Google
Cloud’s HPC best practices”

Proprietary + Confidential

Benefits of the Cluster Toolkit

Easily create turnkey HPC

environments
Configurable, extensible and

open-source

Supports analytics via Cloud

Monitoring

● Easily create turnkey HPC

environments and get the best

performance out-of-the-box

● Start with verified cluster

blueprints and stay up to date

with GCP best practices

● Based on standard tech stack,

and allows a broad set of cluster

customizations: YAML,

Terraform, Packer, Ansible and

Shell

● Open source - available for

customers and solution

providers to add new features

● Built-in labeling functionality

makes it easy to track resources

with Cloud Monitoring

● Optional custom HPC labeling

available to get insights on

cluster performance

A vast range
of services

Deploying cluster
computing environments
often requires leveraging
technologies from
various domains.

Cluster
Toolkit

Ex: UCR

"Through the Scale and
Innovation of Google Cloud
Platform and their Toolkit we
revolutionized research at UCR.
We achieve goals once deemed
impossible by our researchers,
in extraordinary timeframes."
– Chuck Forsyth, Director
Research Computing, UCR.

UC Riverside
Filestore

Cloud Storage

DAOS

DDN Exascaler
Lustre

GKE

Slurm

HTCondor

PBS Pro

Cloud Batch

CPU
families

GPU
TPU

Packer

Spack

OS Login

Schedulers
& Runtimes

File Systems
& Storage

Operations

Compute

Monitoring

LoggingVPC

Firewalls
NAT Router

IAP

Networking

CRD

Cluster
Toolkit

User
Environment

Big Query

HPC Environment
Configuration
Environments are
extended by editing
a simple text file in
YAML format
(80 lines)

Optional: Create
deployment artifacts
Based on the toolkit
modules and the config
file, generates the
deployment folder
containing code for
infrastructure
provisioning and
configuration
(~20K lines)

Deploy
environment
Reads the
deployment
folder and
provisions all
infrastructure
and software
(~37K lines)

Journey to a working environment
From 37K lines to 80

Proprietary + Confidential

Cluster Toolkit
The Cluster Toolkit is a modular, composable,
terraform-based toolkit designed to make it easy
to deploy repeatable, turnkey HPC environments
that follow Google Cloud’s HPC best practices.

Key components:

● Blueprints defines an HPC environment.
They reference individual modules which
they use to compose the desired system.

● Modules are code to deploy specific
components of an HPC system, such as a
cluster’s partition, a storage system, or the
network. Either imported from public
sources (Github), or hosted privately.

● Infrastructure will host the HPC system
that is built, and the Cluster Toolkit supports
the core Google Cloud services and
features that are required for HPC.

Infrastructure

Blueprints

Cluster Toolkit

General Purpose Workload Specific Partner Focused

Modules

HTCondor

PBS Pro

DDN EXAScaler Dell Omnia Spack

Cloud
Monitoring

Packer

Compute StorageNetwork

Filestore Cloud
Storage

Persistent
Disk

VPC
Networks

GPUs

Scheduler Storage General

CRD

Cloud Storage
FUSE

TPUs

Slurm

Batch

GCE SpotGKE

Parallelstore

Proprietary + Confidential

Cluster Toolkit Deployment

gcluster engine

Format: Binary

Modules

Format: Terraform,
Packer, Scripts

Deployment Folder

Format: Terraform,
Packer, Scripts, etc.

Cluster Toolkit
Environment

Monitoring and
Analytics
(Optional)

Cluster Toolkit
Environment

Configuration

Blueprint

Format: YAML

Modules are building blocks
● Abstracted, loosely defined interfaces for storage, network, etc.
● We curate a list of modules implementing known best practices
● Can point to arbitrary terraform or packer code

Dependency is injected between modules
● Composing becomes easier if modules focus on specific

responsibilities
● ex: A scheduler should not create networks, a database should

not create storage systems, a storage should not create SAs.

Before and after terraform
● Can build images and handle software installation, initialization

beyond terraform
● The toolkit generates terraform, which makes it familiar to

customers who already have pipelines or TF expertise

The YAML blueprint
is a higher level
abstraction of the
cluster

Proprietary + Confidential

Why not just use terraform?
Easier:

● Compact YAML blueprint syntax is easy to explain to
customers and does not require previous terraform
knowledge

● Single file represents the entire deployed environment
and can include various aspects like project creation,
service enablement, network, image creation, etc.

● Users define high-level dependencies (via use clause).
The toolkit handles the complex variable passing.

● Easy to share best practices, tutorials, guides

● Allows for fast and easy modular development.
Iterative modifications are incredibly simple to
implement. Switch from filestore to lustre by swapping
out 1 line. New slurm partition in 6 lines. Monitoring
dashboard: 4 lines…

● Benefit from continued investment in making
blueprints simpler, improved usability and deployment
(deploy command coming soon)

Increased supportability:

● Customers’ entire environment is described

● Easy to reproduce and test

Expandable:

● Large ecosystem of pre-existing interoperable
modules (several file systems, schedulers, etc.)
that are tested together

● Addresses Terraform’s last mile problem
(Provisioners are a Last Resort). The toolkit
integrates image building, infrastructure
provisioning, software installation and
configuration.

https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/modules
https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/modules
https://developer.hashicorp.com/terraform/language/resources/provisioners/syntax#provisioners-are-a-last-resort

Default network

Client nodes

client-vms
Compute Engine

Storage

Lustre
Compute Engine

Lustre
Compute Engine

dependency expressed
easily, including drivers and

os configuration

YAML as higher level abstraction

Default network

Client nodes

client-vms
Compute Engine

Storage

YAML as higher level abstraction

NFS Storage
Filestore

Elements of a blueprint: header
Name of the blueprint. It can be used to filter billing,
monitoring, etc. (think of this as a “class” name)

https://cloud.google.com/cluster-toolkit/docs/setup/hpc-bluepri
nt

Deployment variables are available to all modules,
as long as they have an input variable that matches
these names. They can be used to change
instances of the blueprints and can be overridden
via –vars flag (think object properties).
Deployment name will determine the name of the
deployment folder (output of ghpc create).

It is possible to set the terraform state of a
deployment in a blueprint or with the
backend-config flag.

These four variables are almost always present, but only deployment_name is required..

https://cloud.google.com/hpc-toolkit/docs/setup/hpc-blueprint
https://cloud.google.com/hpc-toolkit/docs/setup/hpc-blueprint

Elements of a blueprint: Deployment groups Groups define top-level terraform folders
(and tf state)

Groups have a list of modules, which are
building blocks of a deployment.

Modules can use other modules.
This means: assign any input
variables of “homefs” with the value
of matching outputs of “network”

https://cloud.google.com/cluster-toolkit/docs/setup/hpc-bluepri
nt

https://cloud.google.com/hpc-toolkit/docs/setup/hpc-blueprint
https://cloud.google.com/hpc-toolkit/docs/setup/hpc-blueprint

A note about modules

● Modules can be anywhere: the toolkit repo, any
github repo, a local folder…

● gcluster does not need to know anything about
the modules, we often call Cloud Foundation
Toolkit terraform modules directly.

● Default values simplify configuration and promote
consistency.

● We provide over 50 modules implementing
schedulers, storage options, etc.

● It is easy to write your own modules. For best
results, follow our guidelines.

https://github.com/GoogleCloudPlatform/clus
ter-toolkit/tree/main/modules#module-fields

https://github.com/GoogleCloudPlatform/clust
er-toolkit/blob/main/docs/module-guidelines.
md

https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints
https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints
https://github.com/GoogleCloudPlatform/hpc-toolkit/blob/main/docs/module-guidelines.md
https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/modules#module-fields
https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/modules#module-fields
https://github.com/GoogleCloudPlatform/cluster-toolkit/blob/main/docs/module-guidelines.md
https://github.com/GoogleCloudPlatform/cluster-toolkit/blob/main/docs/module-guidelines.md
https://github.com/GoogleCloudPlatform/cluster-toolkit/blob/main/docs/module-guidelines.md

Proprietary + Confidential

● Generated by the gcluster command.

● Contains all the required artifacts for deploying an environment:
terraform modules, scripts, etc.

● Self contained – can be tracked like source code and distributed

● A top-level folder for each deployment-group. One top-level main.tf
for each deployment group.

HPC Deployment folder

hpc-cluster-simple/

├── packer
│ └── image100
│ ├── example.yaml
│ ├── image.pkr.hcl
│ ├── module.json
│ ├── README.md
│ └── variables.pkr.hcl
└── infrastructure
 ├── main.tf
 ├── modules
 │ ├── filestore
 │ ├── pre-existing-vpc
 │ ├── simple_instance
 │ └── startup-script
 ├── terraform.tfvars
 └── variables.tf

● Cluster Toolkit provides a list of curated and tested
example blueprints

● Blueprint Catalog makes it easy to filter by
○ Software & Applications: Fluent, WRF,

OpenFoam, Gromacs, QSim
○ Scheduler
○ Storage Type
○ Machine Type
○ Operating System

● Examples are ready to use as is or can be a jumping off
point for building a custom environment

● Most examples are backed by nightly integration tests
that ensure they will be functional out of the box.

● g.co/cloud/cluster-toolkit/docs/setup/hpc-blueprint-catal
og

○ or google "Cluster Toolkit blueprint catalog"

HPC Blueprints Catalog

http://g.co/cloud/hpc-toolkit/docs/setup/hpc-blueprint-catalog
http://g.co/cloud/hpc-toolkit/docs/setup/hpc-blueprint-catalog

What was deployed?

● APIs enabled, VPC network created
● Storage

○ GCS Buckets, Filestore (NFS)
● Spack

○ Builder installs Intel MPI, GCC, and GROMACS to Filestore
● Slurm Cluster

○ VMs: Login Node, Controller
○ Auto-scaling Partitions: CPU, GPU (A2 + NVIDIA A100)
○ Storage Mounted

● Remote Desktop VMs with GPU Acceleration
○ Chrome Remote Desktop, VMD
○ Storage Mounted

● HPC Monitoring Dashboard

Cluster Toolkit Blueprint for GROMACS

Cluster Toolkit
GROMACS Blueprint

Cluster Toolkit
GROMACS Demo Video

Blueprint Components

● Network - Existing VPC network leveraged, gVNIC installed
● Storage - New Filestore (NFS) with 2TB of SSD storage
● Cluster

○ Platform - Google Compute Engine (GCE)
○ Scheduler - Slurm Workload Manager
○ Environment - Automatically installs Conda, Tensorflow,

NVIDIA Drivers, CUDA, NCCL, TensorRT, Pytorch, and more
○ Image - Custom Debian image created by packer
○ Management VMs - Login Node, Controller
○ Auto-scaling Partitions

■ A2 VMs (1 x NVIDIA A100 GPUs), Compact Placement
■ G2 VMs (1 x NVIDIA L4 GPUs), Compact Placement

Cluster Toolkit Blueprint for EDA

Cluster Toolkit
ML on Slurm Blueprint

Ops Suite

Cluster Toolkit Blueprint for ML on Slurm

Slurm

Login Node
Compute Engine

Controller
Compute Engine

Auto-scaling Partitions

G2 VM Partition
Compute Engine

g2-standard-32

A2 VM Partition
Compute Engine

a2-highgpu-1

Storage

NFS Storage
Filestore

Object Storage
Cloud Storage

Monitoring

Logging

User
Custom Image

Admin

Blueprint Components
● Network - 2 x VPCs for Host + 8x GPU NICS, gVNIC installed
● Shared Storage - Filestore (NFS)
● Object Storage - Google Cloud Storage via Cloud Storage FUSE
● Parallel Filesystem - Parallelstore (Intel DAOS) 12-100TB
● Cluster

○ Scheduler - Slurm Workload Manager
○ Environment - Automatically installs
○ NVIDIA Drivers, CUDA, Nvidia Enroot / Pyxis
○ Image - Ubuntu 22 available; Rocky 8 in development
○ Management VMs - Login node, Controller node
○ Compute partition

■ A3-Ultra VMs
● 8 x NVIDIA H200 GPUs
● 3600 Gbps total bandwidth
● 12TB Local SSD per VM

■ Compact Placement
■ Automatic topology-awareness scheduling

Blueprint for NeMo on A3-Ultra VMs with Slurm

Ops Suite

Cluster Toolkit blueprint for A3-Ultra on Slurm

Slurm

Login node
Compute Engine

Controller
Compute Engine

Auto-scaling partition

A3-Ultra Partition
Compute Engine
a3-ultragpu-8g
12TB Local SSD

Monitoring

Logging

User
Ubuntu 22

Admin Storage

NFS storage
Filestore

Object storage
Cloud Storage

Parallelstore
12 - 100 TBA3-Ultra Cluster

Toolkit Blueprint

How software is configured
● Startup scripts: Shell / Data or ansible, they automate specialization after boot. Many

playbooks available as flags: driver installation, docker configuration, monitoring, disk
setup, etc.

○ Updates happen at redeployment. Best for things that don't change or ephemeral systems.

● Image building: support for packer modules to build images as part of blueprint.
Leverages startup script to make "runtime or image building interchangeable".

○ Since compute nodes are basically ephemeral, rolling update of compute images is easy.

● Spack: spack modules leverage startup scripts to automate common spack and Ramble
tasks.

● Containers: Slurm + Enroot has surged in popularity and most AI workloads now leverage
containers.

○ Mostly unmanaged, most users pull / build / run their own. Best quality of living for the user.

https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/modules/scripts/startup-script
https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/modules/packer/custom-image
https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/community/modules/scripts/spack-setup
https://github.com/GoogleCloudPlatform/cluster-toolkit/tree/main/community/modules/scripts/ramble-setup

“Using the Cluster Toolkit, we can now
create an HPC cluster in Google Cloud in a
matter of minutes.”
Adrian Tate, CEO, NAG

“The Cluster Toolkit reduces complexities
and improves automation while mitigating
errors for HPC in the cloud.”
Suresh Andani, Director, Cloud Business Development, AMD

Try it yourself

https://cloud.google.com/cluster-toolkit/docs/quickstarts/slurm-cluster

Proprietary + Confidential

Feedback and Questions?

